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4. Determine all integers n > 2 for which there exist integers @y, xo,..., T,
satisfying the condition that if 0 < i < n, 0 < j < n, ¢ # j and n divides 2i + j,
then z; < x;.

Proposed by Merlijn Staps, NLD

The answer is that n = 2* with £ > 1 or n = 3 - 2* where k£ > 0.

Solution 1.

Suppose that n has one of these forms. For an integer ¢, let z; be the largest integer
such that 2% divides i. Now assume that 0 < i <n, 0 < 7 < n, i # j, n divides
2i+ j and z; > x;. Then the highest power of 2 dividing 27 4 j is 2% and therefore
k < z; and 28 < j. Since 0 < j < n, this is possible only if n = 3 - 2* and either
j =2%or j = 2¥1 1In the first case, i # j and z; > x; imply ¢ = 2" leading to
the contradiction 3-2% = n | 2+ j = 5-2F. The second case is not possible as i # j
and z; > z; now imply i > 282 > .

Now suppose that n does not have one of these forms and xy, s, ..., x,_1 satisfying
the given condition exist. For any positive integer m, let a,, be the remainder of
the division of (—2)™ by n. Then none of a,, is 0 as n is not a power of 2. Also
A F Ay for any m > 1 as a,, = a,,1 would lead to n dividing 3 - 2™. Moreover
n divides 2a,, + ap4+1. Hence we must have z,, < z,, < x,, < ... which is not
possible as a,,’s can take on only finitely many values.

Solution 2.

Let E = {n/3,n/2,2n/3} N{1,2,...,n — 1}, D = {1,2,....,n — 1} \ E, and let
f:D — {1,2,....,n — 1} be the function sending 7 in D to the unique f(i) in
{1,2,...,n — 1} such that f(i) = —2i (mod n).

Then the condition of the problem is that x; < ;) for each i in D. Since D is a
finite set, the integers x1, s, ..., x,_1 exist if and only if for each 7 in D there exists
a positive integer k(i) such that f*@ (i) belongs to E. This can be seen as follows:

o If f*(i) does not belong to E for any k > 0 for some i, then there exists
ky > ky > 0 such that f* (i) = f*(i), leading to the contradiction z s, ; <
Lkz (i) = Lprai):

e On the other hand, if such k(i) exists for each ¢ in D, and if k¢(i) denotes
the smallest such, then the condition of the problem is satisfied by letting
x; = —ko(7) for i in D, and z; = 0 for 7 in F.

In other words, the integers 1, xs, ..., x,_ 1 exist if and only if for each 7 in D there
exists a positive integer k(i) such that (—2)*®i = n/3,n/2 or 2n/3 (mod n). For
i = 1, this implies that n = 2* with k¥ > 1 or n = 3 - 2* with £ > 0. On the other
hand, if n has one of these forms, letting k(i) = k does the trick for all 7 in D.



Solution 3.

Suppose that x1, 2o, ..., 2,1 satisfy the condition of the problem for n = k. Let
yoi = x; for 1 < i < k — 1 and choose 39,1 for 1 < i < k to be less than
min{xy, Zs,...,2x_1}. Now suppose that for n = 2k we have 0 <i <n, 0 < j <n,
i # 7, ndivides 2i+7. Then jis even. If i is also even, then 0 <i/2 < k,0 < j/2 < k
and k divides 2(i/2) + (j/2); hence y; = ;)2 < x;/2 = y;. On the other hand, if i is
odd, then y; < min{zy, xs,..., 251} < 20 = y;. Therefore, y1, 42, ..., yor—1 satisfy
the condition of the problem for n = 2k.

Since the condition is vacuous for n = 2 and n = 3, it follows that xy,xs,..., 2,1
satisfying the condition exist for all n = 2¥ with k > 1 and n = 3 - 2% with k& > 0.

Now suppose that x,xs,...,x,_1 satisfying the condition of the problem exist for
n = 2¥m where k is a nonnegative integer and m > 3 is an odd number. Let by = 2*
and let b;1; be the remainder of the division of (—2)b; by n for ¢ > 0. No terms of
this sequence is 0 and no two consecutive terms are both equal to b; as m > 3. On
the other hand, as (—2)?™ = 1 (mod m), we have by, = (—2)?(M2k = 2k = p,
(mod n), and hence by, = by. Since 2b; + b;4q is divisible by n for all i > 0, we
have zp, < 2, < -+ < Ly = Lbos & contradiction.



9. Let n be a positive integer. We have n boxes where each box contains a non-
negative number of pebbles. In each move we are allowed to take two pebbles from
a box we choose, throw away one of the pebbles and put the other pebble in another
box we choose. An initial configuration of pebbles is called solvable if it is possible
to reach a configuration with no empty box, in a finite (possibly zero) number of
moves. Determine all initial configurations of pebbles which are not solvable, but
become solvable when an additional pebble is added to a box, no matter which box
is chosen.

Proposed by Dan Schwarz, ROU

The answer is any configuration with 2n — 2 pebbles which has even numbers of
pebbles in each box.

Solution 1. Number the boxes from 1 through n and denote a configuration by
x = (x1,29,...,x,) where x; is the number of pebbles in the ith box. Let

D(x) = i VQ_ 1J

i=1

for a configuration x. We can rewrite this in the form
1 1
D(z) = §N(x) —n+ éO(x)

where N(z) is the total number of pebbles and O(x) is the number of boxes with
an odd number of pebbles for the configuration z.

Note that a move either leaves D the same (if it is made into a box containing
an even number of pebbles) or decreases it by 1 (if it is made into a box with an
odd number of pebbles). As D is nonnegative for any configuration which does not
have any empty boxes, it is also nonnegative for any solvable configuration. On the
other hand, if a configuration has nonnegative D, then making m; = |(x; — 1)/2]
moves from the 7th box into m; empty boxes for each ¢ with m; > 0 fills all boxes
as D(z) > 0 means ) _,m; > (number of empty boxes).

As N(z) and O(x) have the same parity, a configuration z is solvable exactly when
O(z) > 2n—N(x), and unsolvable exactly when O(z) < 2n—2—N(z). In particular,
any configuration with 2n — 1 pebbles is solvable, and a configuration with 2n — 2
pebbles is unsolvable if and only if all boxes contain even numbers of pebbles.

Suppose that z’ is obtained from = by adding a pebble in some box. Then O(z') =
O(z) + 1 or O(z') = O(z) — 1. If x is unsolvable and 2’ is solvable, then we must
have O(z) < 2n —2— N(z) and O(2’) > 2n — N(2') = 2n — 1 — N(z), and hence
O(z') = O(x)+ 1. That is, the pebble must be added to a box with an even number
of pebbles. This can be the case irrespective of where the pebble is added only if
all boxes contain even numbers of pebbles, and 0 = O(z) < 2n — 2 — N(x) and
1=0(2") > 2n —1— N(x); that is, N(z) = 2n — 2.



Solution 2. Let x be a configuration and z be another configuration obtained from
x by removing two pebbles from a box and depositing them in another box.

Claim 1: 7 is solvable if and only if x is solvable.

Let us call two configurations equivalent if they have the same total number of
pebbles and parities of the number of pebbles in the corresponding boxes are the
same. (It does not matter whether we consider this equivalence for a fixed ordering
of the boxes or up to permutation.) From Claim 1 it follows that two equivalent
configurations are both solvable or both unsolvable. In particular, any configuration
with 2n — 1 or more pebbles is solvable, because it is equivalent to a configuration
with no empty boxes.

Let us a call a configuration with all boxes containing two or fewer pebbles scant.
Every unsolvable configuration is equivalent to a scant configuration.

Claim 2: A scant configuration is solvable if and only if it contains no empty boxes.

By Claim 1 and Claim 2, addition of a pebble to a scant unsolvable configuration
makes it solvable if and only if the configuration has exactly one empty box and
the pebble is added to the empty box or to a box containing two pebbles. Hence,
the addition of a pebble makes an unsolvable scant configuration into a solvable
configuration irrespective of where it is added if and only if all boxes have even
numbers of pebbles and exactly one of them is empty. Therefore, the addition of a
pebble makes an unsolvable configuration into a solvable one irrespective of where
the pebble is added if and only if the configuration has 2n — 2 pebbles and all boxes
have even numbers of pebbles.

Proof of Claim 1: Suppose that the two pebbles were moved from box B in z to
box B in #, and z is solvable. Then we perform exactly the same sequence of moves
for  as we did for x except that instead of the first move that is made out of B we
make a move from B (into the same box), and if there was no move from B, then
at the end we make a move from B to B in case B is now empty.

Proof of Claim 2: Any move from a scant configuration either leaves the number of
empty boxes the same and the resulting configuration is also scant (if it is made into
an empty box), or increases the number of empty boxes by one (if it is made into
a nonempty box). In the second case, if the move was made into a box containing
one pebble, then the resulting configuration is still scant. On the other hand, if
it is made into a box containing two pebbles, then the resulting configuration is
equivalent to the scant configuration which has one pebble in the box the move was
made into and exactly the same number of pebbles in all other boxes as the original
configuration. Therefore, any sequence of move from a scant configuration results
in a configuration with more or the same number of empty boxes.



6. Determine all functions f: R — R satisfying the condition

FWP+22f(y) + f(2)%) = (y+ f(@) (= + f())

for all real numbers x and y.
Proposed by Daniél Kroes, NLD

1
The answer is the functions f(x) =z, f(x) = —z and f(x) = 5~

Solution.

1
It can be easily checked that the functions f(z) =z, f(z) = —z and f(z) = 5%

satisfy the given condition. We will show that these are the only functions doing so.

Let y = —f(z) in the original equation to obtain

f2f (@) +22f(=f(2))) =0

for all x. In particular, 0 is a value of f. Suppose that u and v are such that
f(u) =0 = f(v). Plugging + = w or v and y = u or v in the original equations
we get f(u?) = u?, f(u?) = wv, f(v?) = wv and f(v?) = v2. We conclude that
u? = uv = v? and hence u = v. So there is exactly one a mapped to 0, and

f@) +af(~f() = 5 *)
for all z.

Suppose that f(z1) = f(z2) # 0 for some x; and z,. Using (*) we obtain
r1f(—=f(z1)) = xof (—f(x2)) = xof (—f(21)) and hence either x; = x5 or f(x;) =
f(z3) = —a. In the second case, letting = a and y = z; in the original equation
we get f(z? — 2a%) = 0, hence 23 — 2a® = a. Similarly, 23 — 2a® = a, and it follows
that 1 = x5 or 1 = —x, in this case.

Using the symmetry of the original equation we have

FUf@)? +y* +22f () = (@ + W)y + f(2) = F(f)* +2° + 2yf(z)) (%)

for all x and y. Suppose f(z)>+y?+2xf(y) # f(y)*+2*+2yf(x) for some z and y.
Then by the observations above, (z+ f(y))(y+ f(z)) # 0 and f(x)*+y*+2zf(y) =
—(f(y)? + 2® + 2y f(x)). But these conditions are contradictory as the second one
can be rewritten as (f(z) +y)*+ (f(y) +z)* = 0.

Therefore from (**) now it follows that
F@) +y* +20f(y) = f(y)* +2* + 2y f () (**)

for all z and y. In particular, letting y = 0 we obtain f(x)? = (f(0) — x)? for all z.
Let f(z) = s(z)(f(0) — x) where s : R — {1, —1}. Plugging this in (***) gives

z(ys(y) + f(0)(1 = s(y)) = y(as(z) + f(0)(1 = 5(x)))
for all x and y. So s(x) 4+ f(0)(1 — s(z))/z must be constant for x # 0.



If £(0) = 0 it follows that s(z) is constant for x # 0, and therefore either f(x) =«
for all = or f(z) = —x for all . Suppose that f(0) # 0. If s(x) is —1 for all
x # 0, then —1 4+ 2f(0)/z must be constant for all  # 0, which is not possible. On
the other hand, if there exist nonzero x and y such that s(x) = —1 and s(y) = 1,
then —1 4+ 2f(0)/xz = 1. That is, there can be only one such z, that z is f(0), and
hence f(z) = f(0) — x for all . Putting this back in the original equation gives
2f(0)? = f(0) and hence f(0) = 1/2. We are done.

Remark:
The following line of reasoning or a variant of it can be used between (*) and (***):

Suppose that f(x;) = f(z2) # 0 for some z; and x5. Then from (*) it follows that
x1f(=f(z1)) = xof (= f(x2)) = zof (—f(x1)) and hence either x1 = x5 or f(x1) =
f(x9) = —a. In the second case, using (*) again we obtain a* = a/2 and therefore a =
1/2. Now letting z = 1/2 in the original equation gives f(y*+ f(v)) = y(f(y)+1/2)
for all y. From this letting y = 0 we obtain f(0) = 1/2, and letting f(y) = —1/2 we
obtain f(y*—1/2) = 0 and y* = 1. To summarize, f(x;) = f(z2) # 0 implies either
xy =x9 or x1,22 € {1,—1} and f(1) = f(—1) =—1/2, f(1/2) =0, f(0) =1/2.

Using the symmetry of the original equation we have

FUf@) +y* +22f(y) = (x+ fW))(y + f(2) = f(f(y)* +2° + 2y f(z) (")

for all z and y. Let y = 0. Then

F(f(x)® +22£(0) = f(f(0)* + 2?)

for all z. If f(z)? + 22 f(0) # f(0)® + 2 for some z, then by the observation above
we must have f(1/2) =0, f(0) = 1/2 and f(x)? +22f(0) = —(f(0)? + z*). We can
rewrite this as f(x)? + (f(0) + z)? = 0 to obtain z = 1/2 and f(0) = —z = —1/2,
which contradicts f(0) = 1/2. So we conclude that f(z)* + 2zf(0) = f(0)? + 22
for all z. This implies f(z)? = (f(0) — z)? for all z. In particular, the second case
considered above is not possible as (f(0) —1)*> = f(1) = f(—1) = (f(0) + 1) means
f(0) = 0, contradicting f(0) = 1/2. Therefore f is injective and from (**) now it
follows that

f@)?+y* +22f(y) = f(y)* + 2 + 2y f(x) (**%)

for all x and y.



