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Abstract. In August 1999, Knudsen and Meier proposed 
an attack to the block cipher RC6 by using correlations 
derived from x2 tests. In this paper, we improve the 
attack and apply this method to the block cipher RC5 
and simplified variants of RC6, and show some 
experimental results. We show this approach distinguish 
the random permutation and RC5 with of up to 20 
rounds by using chosen ciphertexts attack. We also show 
our approach for deriving the last round key of up to 17 
rounds RC5 by using chosen plaintext attack. Moreover, 
we show full rounds RC5 with some weak key can be 
broken by using lesser complexity than that of the 
exhaustive search. Additionally, this method can be 
applicable to simplified variants of RC6, that is, RC6-
INFR, RC6-NFR, RC6-I, we observe the attack to these 
block ciphers.  
 
Key words: RC5, RC6, chosen ciphertexts attack, chosen 
plaintext attack, weak key 
 
1. Introduction 

 
RC5 is a block cipher designed by R. Rivest in 1994 

(Rivest 1995). One of the reasons that many 
cryptographers were interested in cryptanalysis of RC5 
comes from its simple structure. 

 
Kaliski and Yin evaluated RC5 with respect to 

differential and linear crypt-analysis (Kaliski 1995). The 
paper shows that linear cryptanalysis is applicable for 
versions of RC5 with a small number of rounds. Moriai 
et al., found some weak key against linear attack (Rivest 
1995). An improvement of Kaliski and Yin's attack by a 
factor of up to 512 was given by Knudsen and Meier 
(Knudsen 1996). Biryukov and Kushilevitz proposed 
drastic improvement of the previous results due to a 
novel practical differential approach (Biryukov 1998). 
Their attack requires 244 chosen plaintexts which is 
smaller than complexity of exhaustive key search. In 
their approach, they study more complex differentials 
than in previous works, and defined a more general 
notation, so called “good pair," with respect to data 
dependent rotations. In their method, good pairs were 
searched by using Hamming weights of differences for 
each round, then the key of last round were derived. 

Their attacking algorithm, however, is rather 
complicated and it does not seem so easy to distinguish 
good pair and others correctly, because of influences of 
addition of key to the hamming weights of differentials.  

 
In August 1999, Knudsen and Meier posted to the 

internet news an information of their new paper dealing 
with cryptanalysis of RC6 (Knudsen et al. 1999). In the 
paper, they used extremely different technique from the 
previous approach, that is, correlations obtained from x2 
test. In their approach, for fixing each of the least 
significant five bits in some words of plaintexts and 
investigate the statistics of the 10-bit integer obtained by 
concatenating each of the least significant five bits in 
some words of ciphertexts. To measure the effect of the 
distribution of the target bits, they forced the values of 
10 bits by taking appropriate plaintexts and they 
computed the x2-value of the 10 bit integers, then they 
compared to x2-distribution with 1023 freedom, and 
distinguished RC6 from a random permutation. They 
estimated from systematic experimental results that 
version of RC6 whose round is reduced can be 
distinguished from a random permutation. Moreover, 
they constructed a key-recovery method for RC6 with up 
to 15 rounds which is faster than exhaustive key search. 

 
In this paper, we improve the Knudsen and Meier's 

attacking algorithm obtained from x2 tests, and apply this 
to the RC5 encryption algorithm. Then we show the 
experimental results of attacking the RC5 with reduced 
rounds. Our computatinal experiments show that RC5 
with up to 20 half rounds can be distinguished from a 
random permutation by using 254 chosen ciphertext. 
Moreover, we show that full round RC5 with a weak key 
which is available one in 220 keys is distinguishable from 
random permutation with less than complexity of 
exhaustive key search. 

 
Furthermore, we construct an algorithm for key 

recovery using the correlation and show the 
computational experiments. From our experiments, we 
conclude that the last round key of RC5 with up to 17 
half rounds, or RC5 with up to full round with respect to 
a weak key can be recovered by using 254 chosen 
plaintext attack with success probability 80%. 



 

At last, we observe the strength of the simple variants 
of RC6 demonstrated in (Contini 1999), that is RC6-
INFR, RC6-NFR and RC6-I, against our improved 
attacking algorithms. Then we show RC6-INFR, RC6-
NFR with up to 19 rounds, and RC6- I with up to 15 
rounds are breakable for our improved distinguishing 
algorithm. Moreover we show full round RC6-INFR, 
RC6-NFR with respect to a weak key existing in a ratio 
of one to 245 are breakable by using our distinguishing 
attack. 

 

2. Preliminary 
 

     In this section, we note some notations and 
definitions. At first, we recall the x2 tests for 
distinguishing a random sequence taking from uniform 
distribution and non-random sequence (Contini 1999). 
Proposition 2.1. Let A be a set {a0,…,am-1). Let 
X=X0,…,Xn-1 be independent and identically distributed 
random variables taking from the set A uniformly. Let 
Naj (X) be the cardinality of variables in X which is equal 
to aj. 

 

Table 1. The chi-square distributions with and 1023 degrees of freedom 
       Level        0.5        0.90        0.95        0.99        0.999 
       X2        30.33        41.42        44.99        52.19        61.09 

X2  distribution of 31 degrees of freedom 
 

       Level         0.5        0.90        0.95        0.99        0.999 
       X2        1022.0        1080.94        1098.92        1130.89        1168.85 

X2 distribution of 1023 degrees of freedom 
 
The X2 statistic X2(X) of X is defined by 
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Then, the distributions of X2(X) can be approximated to 
the chi-square distribution with m-1 degrees of freedom 
for large n. 
 
     Table 1 shows the chi-square distributions with 31 
degrees and 1023 degrees of freedom, which we will use 
in the following sections.  
 
     For example, level=0:999 and _2 = 61.09 in Table 1 
means that X2 values of 99.9% of random sequences 
with n elements taking from the set of 32 elements 
uniformly will not exceed 61.09 for large n. We 
comment that, for X2 tests, n should be large enough 
such that each expected value of Nai (X) (that is, n/m) is 
larger than 4 or 5, in practical. 

 
ls5(A): least significant 5 bits of a 32 a bits word A 
(A, B): plaintext of RC5 (32 bits * 2) 
(A’, B’): ciphertext of RC5 (32 bits * 2) 
(Ai, Bi): output of ith half round, especially,  
   (A0, B0) = (A, B) and (Ar, Br) = (A, B) 
xi: amounts of data dependent rotation in the i-th half 
round, that is ls5(Ai) 
yi: xr-i+1 

 
3. X2 Tests of RC5 
 
     In this section, we explain the X2 tests for plaintexts 
and ciphertexts of RC5. The notations are followed from 
the previous section. We examine 4 different types of X2 
tests. For each test, we observe the X2 statistics of 5 bit in 
the plaintexts or ciphertexts. 
Test1: Fix least significant 5 bits of plaintext A to 0, and 
compute X2 of least significant 5 bits of ciphertext A’. 
Test2: Fix least significant 5 bits of plaintext A and B to 
0 and compute X2 of least significant 5 bits of ciphertext 
A’. 

Test3: Fix least significant 5 bits of ciphertext B’ to 0, 
and compute X2 of least significant 5 bits of plaintext B. 
Test4: Fix least significant 5 bits of ciphertext A’ and B’ 
to 0 and compute X2 of least significant 5 bits of 
plaintext B. 
 
     If RC5 was ideal random permutation, the 
distribution of the X2 value is similar to the X2 
distribution of 31=25-1 degrees of freedom. So, we set 
up the threshold by 45 in order to distinguish from a 
random permutation. The sequence whose X2 value 
extends more than 45 can be distinguished from a 
random permutation in a probability of 95 %. (Table 1).  

     
     Table 2 shows the results of X2 tests. Each entry of X2 
value is an average of 100 X2 values of different 100 
keys. 

 
     The numbers denoted by bold character are the X2 
values at the first coming over 45. These experiments 
show that each additional two half rounds require about 
26 times as many texts to get about the same X2 value. 
The results of the Test 1 and Test 3 show that the each 
number of required data is almost same. On the other 
hand, each the number of required elements in Test 2 is 
23 times as many as corresponding one of Test 4, 
because of the influences of the initial key S[1]. It means 
that if the value of data dependent rotation at the first 
round is fixed 0, the X2 value of the target bits in the 
output of last round becomes much larger.  
 
4. Distinguishing Algorithm and Weak Key 
 
     By the examination described in the previous section, 
we conclude that the better way in order to distinguish 
the RC5 encryption and a random permutation in the 
four conditions described in Test1 to Test4, is the 
condition in Test4. We consider a following algorithm. It 
is one of the chosen ciphertext attacks. 
 

Algorithm 4.1. (Distinguishing attack) 

Input: RC5 algorithm permutation, n: a number; 
Output: answer that Input is RC5or not ; 



 

for i  from 1 to n 
     Let A/ ,B/  be a random number such that  
         ls5(A/) =  ls5(B/) = 0; 

(A, B)  = decrypted message of (A/, B/); 
count up the counter map[ls5(B)]; 

         calculate X2 of the map; 
         if x2≥45  
            then return the answer “Input is RC5”; 
         else return the answer “Input is a random   
            permutation“; 

 
Table 2. Evaluations of the X2 tests (Test1,...,Test4, average of 100 keys) 

 
               Test 1(fix ls5(A) = 0)                                               Test 2 (fix ls5(A) = ls5(B) = 0) 

4 half rounds 4 half rounds
#data 210 211 212 213 214 215 #data 26 27 28 29 210 211 

X2 30 33 37 41 47 66 X2 31 31 34 40 57 82
6 half rounds 6 half rounds

#data 216 217 218 219 220 221 #data 212 213 214 215 216 217

X2 30 31 34 41 52 70 X2 29 32 35 40 47 61
8 half rounds 8 half rounds

#data 222 223 224 225 226 227 #data 218 219 220 221 222 223

X2 29 31 31 34 46 63 X2 32 32 36 42 55 81
10 half rounds 10half rounds

#data 228 229 230 231 232 233 #data 224 225 226 227 228 229

X2 31 31 32 35 51 72 X2 32 33 36 42 55 81

 
                Test 3 (fix ls5 (A/) = 0)                                       Test 4 (fix ls (A/) = ls5(B/) = 0) 
 

4 half rounds 4 half rounds 
#data 210 211 212 213 214 215 #data 23 24 25 26 27 28 
X2 31 32 34 38 47 59 X2 12 11 39 48 62 94 
6 half rounds 6 half rounds 
#data 216 217 218 219 220 221 #data 29 210 211 212 213 214 
X2 30 33 35 40 49 66 X2 32 34 36 39 47 60 
8 half  rounds 8 half rounds 
#data 222 223 224 225 226 227 #data 215 216 217 218 219 220 
X2 29 31 31 34 46 63 X2 32 34 38 44 65 101 
10 half rounds 10 half rounds 
#data 228 229 230 231 232 233 #data 221 222 223 224 225 226 
X2 30 31 33 35 50 69 X2 32 34 35 42 56 85 

 
     In order to estimate the complexity of Algorithm 4.1, 
we compute the number of required elements that the X2 
value exceeds the 45 more precisely, for each rounds of 
RC5. Table 3 shows the results. From Table 3, we 
calculate the relation between the number of required 
elements and the number of rounds by using the method 
of least squares; 

log2(#data) = α + βr + ε, 

where r is a number of half rounds and ε is a bias. Then 
we have α=-5.33, β=2.97, ε=0.17. This means that each 
additional one half rounds, Algorithm 4.1 requires 
almost 23 times as many texts to get about the same X2 

value on average.  
 
     Table 4 shows that the estimated number of required 
texts for Algorithm 4.1. In Algorithm 4.1, since the 10 
bits in cipher text bits are fixed zero, the total amounts of 
admissible texts is 254. From Table 4, (by omitting the 
small bias) our distinguish attack can be applicable 
reduced RC5 with up to 20 half rounds. 
 
     Now, we consider the weak key. From the 
assumption of Algorithm 4.1, amount of a data 

dependent rotation in the last round is fixed 0. Moreover 
if the condition ls5(S[r+1])=0 holds, the amount of 
rotations of last two rounds are 0. In this case, the last 
round does not influence the X2 value, that is the security 
level is equal to that of r-1 rounds RC5. This case 
happen every one in 25 keys. In the same way, if the 
condition  

ls5(S[r + 1]) = … = ls5(S[r – t + 2]) = 0 

holds, the security level against Algorithm 4.1 is as same 
as r - t rounds RC5. There is one weak key in 25t. 
 
     Since, it is easy to check whether the key is a weak 
key or not, we can find the following weak key. 

key0 = {5b,2d,16,0b,7a,3d,9e,cf,7e,3f,9f,cf,af,d7,eb,75}16 
 
     In this key, we can check:  

ls5(S[19])=…= ls5(S[25])=0. 

Therefore the 24 half round RC5 encryption with key0 
has the same security as 17=24-7 half rounds RC5. From 
Table 4, this RC5 encryption algorithm is distinguished 
from random permutation in 245.16  numbers of data. 



 

Table 3. Precisely examination of x2  and number of data in Test 4 
#  half rounds 6 7 8 9 10 11 12 
#  data (log 2) 12.32 15.71 18.58 21.31 24.09 27.81 30.17 
           X2 45 46 46 45 45 46 45 

 
Table 4. Estimation of the number of required text for distinguishing attack 

 
#half  rounds 

 
13 

 
14 

 
15 

 
16 

 
17 

 
18 

 
19 

 
20 

 
21 

 
22 

 
23 

 
24 

#data (log2) 36.25 36.25 39.22 42.19 45.16 51.1 51.1 54.07 57.04 60.01 62.98 65.95 
1 in 25 keys 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01 62.98 
1 in 210 keys 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01 
1 in 2 15 keys 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 
1 in 2 20 keys 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 
 1 in 225 keys 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 
 1 in 230 keys 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 
 1 in 235 keys 12.49 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 
 1 in 240 keys 9.52 12.49 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 
 
5. Key Recovery Algorithm 
 
     In this section, we propose a key recovery algorithm 
by using the X2 statistics of RC5 with r half rounds. 
 
5.1. Knudsen, Meier's Approach 

     Knudsen proposed an algorithm for key recover of 
the extended key of the first round of RC6 by using X2 
statistics. His approach uses the property that the 0 
amounts of the first rounds data dependent rotation 
growths the X2 value. First of all, we try to modify this 
approach to a key recovery of RC5. 

Algorithm 5.1. (Knudsen,Meier-modified) 

Input: RC5 encryption algorithm of unknown secret 
key 

 
Output: candidate of ls5(S[1])   
for each plaintext (A, B),where ls5b(A)=0 
       compute ciphertext (A/, B/ ); 

       s0 =  32 - ls5(B/)  mod 32; 
       y1 =  ls5(A/); 
      count up the memory map [s0][y1]; 
for each s0 
       X2[s0] = X2 of map [s0]; 
return  s such that X2 [s] = max {X2[s0]|s0 = 0,…,31}; 

     In order to obtain the high success rate of the above 
key recovery algorithm, the average of X2 is far smaller 
than the amount of X2 in the case of zero rotation.  
 
     Table 5 shows the experiment of X2 value of each 
rotation nearly equal to 0. Though the amount of X2 at 
the 0 rotation always highest, X2 values near of 0 still 
large, so the average of X2 is not small. By this reason, 
we cannot obtain high success rate of this algorithm.  
 
     In fact, from the experimental results of the 
algorithm, we have only 20-30% of success probability. 

 
Table 5.   Data   dependent rotation of   lst round and X2 values 6 half round of RC5 (average of 500 tests) 

date 26 27 28 29 30 31 0 1 2 3 4 5 6 
212 31 31 32 34 36 38 43 40 35 33 31 31 31 
213 31 32 33 39 41 45 55 49 39 38 33 31 31 
214 32 33 37 47 51 61 79 69 48 46 35 33 32 
215 34 35 44 62 73 91 127 106 67 61 40 35 35 

 
5.2. Recovering the Least Significant 5 Bits of the Last 
Round Key 
     In this section, we show an algorithm for recovering 
the least significant 5 bits of the last round key S[r+1] by 
using chosen plaintext attack.  
 
     Suppose the least significant 5 bits of each words of 
plaintexts is fixed 0. (Namely (ls5(A)=ls5(B)=0).) In this 
section, we only use the ciphertexts (A’, B’) 
corresponding to the plaintext (A,B) which satisfy the 
condition ls5(A’)=0. (In the next section, we also use the 
texts such that ls5(A’)≠0 for constructing the whole 
procedure recovering the last round 32 bits key). We 

note that the amount of last round data dependent 
rotation y1 is always 0. Then, we have: 

y2=ls5(B’)-ls5(S[r+1])mod32. 

     Therefore, ls5(Ar-2=((A’-S[r])«y2) mod 32. Since S[r] 
is fixed value, the X2 values of ((A’-S[r])«y2) mod 32 
and (A’«y2) mod 32 are almost same. In general, the X2 

statistics of ls5(Ar-2) is much larger than X2 statistics of 
ls5(Ar). Now, we consider the X2 value of ls5(Ar-2). We 
mention that, since we suppose that ls5(A’)=0, when y2 
satisfies y2≤4 or 28≤y2, some of bits in the ls5(Ar-2) are 
fixed. Therefore, it is meaningless for compute the X2 
value of ls5(Ar-2) except for the case of 5≤y2≤27. The 
algorithm is described in Algorithm 5.2. The memory 



 

requirement of this procedure is 215 words (at most 128 
Kbyte), and the dominant step of computational 
complexity is the encryption stage. 

Algorithm 5.2.  (Shimoyama, Takeuchi, Hayakawa (1)) 

Input: RC5 encryption algorithm of  
          unknown  key; 
Output:  candidates ls5 (S[r + 1]); 
for  each  plaintext (A,B), where ls5b(A)=ls5b(B) = 0 
        compute  ciphertext  (A′, B′); 
        if  ls5(A′) = 0 
              for each candidates s0Є{0,…,31}   
              of ls5(S[r + 1]) 
                      y2 = ls5(B′) – s0  mod  32; 
                        if  y2 ≥ 5 and y2  ≤ 27; 
                          z2  = ls5(A′ >>> y2); 
                          count up  the memory  map[so][y2][z2]; 
for each s0,  y2 

              χ2 [s0][y2] =  χ2  of    map[s0][y2]; 
for each s0 

           ave[s0] = average of  χ2 [s0][y2]; 
return  s such  that ave[s]=max{ ave [s0]|so=0,…,31};  

Occasionally, there is a case that the each counter 
satisfied the condition 

map[s0][y2] = … = map[s0][y2][31] = 0 

for some s0, y2. In this case, the correct key is (y2+s0) 
mod 32 in high probability. So return y2+s0 mod 32. By 
using this criterion, we can easily obtain the solution, in 
this special case. 
 
     For 6 rounds, we have success probability more than 
50% by using 218 data, and 70% by using 220. Moreover, 
the probability that the bias is at most ± 1, is more than 
80% with 220 data, and 90% with 221 data. In 8 rounds, 
for each success probability, the corresponding number 
of plaintexts is increased by a constant factor of about 26. 
 
5.3. Recovery of the Last Round Key 
     In this section, we construct an algorithm for 
recovering the all bits of last round key. Suppose 
ls5(A’)=i. Then the amount of last round data dependent 
rotation y1 is equal to i, so y2=((B’-S[r+1])»i)⊕i mod32. 
Let si=(S[r+1])»i) mod 32. Since that the difference of yi 
and ((B’-(si«i))»i)⊕i mod 32 is at most ±, we use ((B’–
(si«i))»i)⊕i mod32 instead of yi. The algorithm, 
described below, is constructed by the same way 
described in the previous section. 
 
Algorithm 5.3. (Shimoyama, Takeuchi, Hayakawa (2)) 
Input: RC5 encryption  algorithm of   
          unknown secret  key; 
Output :candidates S[r+1]; 
for each  plaintext (A′,B′), where sl5b(A) = ls5b(B) = 0 
             compute  ciphertext (A′,B′); 
            y1 = ls5(A′); 
               for each candidates sy1Є{0,…,31}  
                                   of  ls5(S[r+1]>>>y1 )  
                  y2= ls5((B′-(sy1<<<y1)) mod32; 
                  if y2  ≥ 5 and y2 ≤ 27; 
                            z2  = ls5(A′ >>> y2); 

                            count  up the memory  
map[y1][sy1]][y2][z2]; 
    for each  y1,  sy1, y2 

               χ2[y1][sy1][y2]= χ2  of map[y1][sy1][y2]; 
    for  each y1, sy1 

                  ave[y1][sy1]= average  of  χ2[y1][sy1][y2]; 
     for   each  y1 

                key[y1]=s0 such  that  
ave[s0]=max{ave[i]|i=0,…,31}; 
concatenate key[y1] and derive 32 bit key S; 
       return S; 
 
     We comment that for concatenate the 32 candidates 
of 5bits to 32 bit integer, we can use any error correcting 
algorithm, by using the property that each 5 bits solution 
is different from the correct value at most ±1 in high 
probability. 
 
     At the end of this section, we discuss the weak key. 
The key recovering algorithm described in this section, 
we suppose the least significant 5 bits of each words of 
plaintexts are fixed zero. From the same reason of the 
existence of weak keys against distinguishing attack, if 
the condition ls5(S[0])=…=ls5(S[t])=0 holds, the 
security of the r rounds RC5 encryption using this key is 
as same as the security level of r-t+1 half round RC5. 
For example, in the case that the key satisfy  

ls5(S[0])=…=ls5(S[8])=0, 

24 round RC5 with this key has the same security of 17 
half rounds. This key can be found every one in 245 keys.  

 
6. Application to the Simplified Variants of RC6 
 
     Contini presented the some simplified variants of 
RC6, that is RC6-I, RC6-NFR, RC6-INFR, and the 
cryptanalysis to these families. Knudsen proposed the 
attacking method to RC6 in (Knudsen et al. 1999).  
 
     In this section, we consider the security against the 
attack using X2 statistics for the simplified variants RC6-
I, RC6-NFR, RC6-INFR. Each variant has reduced 
round function F compared with RC6 (Table 6). Every 
one of simplified variants is not one of the real world 
block cipher, but prototype block cipher for comparing 
the security with that of RC6, however, we think that 
cryptanalysis of these variants may be meaningful.  
 
     We mention that the least significant 5 bits of the 
output of the round function of 3 variants are obtain from 
only 5 input bits. Therefore, we can apply the Algorithm 
5.2 to each variant with a little modification. The 
remaining problem is a relation of X2 value and number 
of rounds.  
 
     Let observe the following two tests. 
Test1: Fix least significant 5 bits of plaintext A and C to 
0, and compute X2 of least significant 5 bits of ciphertext 
A and C. 
Test2: Fix least significant 5 bits of plaintext A, B, C and 
D to 0, and compute X2 of least significant 5 bits of 
ciphertext A and C. 



 

Table 6. Round function F of variants of RC6 
  RC6-INFR RC6-1 RC6-NFR RC6 

F(x)=  x x<<<5 x ×(2x+1) (x ×  (2x+ 1))<<<5 
 

Table 7. X2 tests to the RC6 variants 
Tests 1 : (fix  lsb(A), lsb(C))  

#rounds INFR NFR I RC6 
2 214 (1159) 213 (1122) 213(1107) 214(1178) 
4 225(1152) 226 (1126) 229 (1171) 230(1156) 

Test 2 : (fix lsb(A), lsb(B), lsb(C), lsb(D)) 
#rounds INFR NFR I RC6 

2 27   (1193) 27(1122) 213(1100) 213(1100) 
4 216 (1109) 217(1102) 222(1141) 229(1171) 
6 228 (1164) 230(1141)   

 
     In these tests, we set up the threshold by 1099. The 
sequence whose X2 value extends more than 1099 can be 
distinguished from a random permutation in probability 
95 %. (Table 1) Table 7 shows the results of the first 
number of X2 coming up with 1099, and corresponding 
the number of data. (They are averages of 50 times 
computer experiments.) 
 
     In the roughly consideration, from Table 7, we 
estimate that each additional 2 rounds require 212, 213 and 
216 times as many number of texts to obtain the same X2 
value for the variants RC6-INFR, RC6-NFR and RC6-I, 
respectively against the Test 1. For the results of Test 2, 
the condition in the Test 2 makes decreasing the initial 
values of the number of required data about 29, 29, 27 
times of those conditions in Test 1, for RC6-INFR, RC6-
NFR and RC6-I. By using either the assumption used in 
Test 1, Test 2, it is estimated that we can cryptanalysis 
up to 19 rounds of RC6-INFR, RC6-NFR, and up to 15 
rounds of RC6-I. Moreover, in assumption of Test 2, 
there is a weak key as the same reason of the case in 
RC5. For example, a key satisfied the following 
condition has the same security level as 20-i round, 

ls5(S[0]) = … = ls5(S[2i + 1]) = 0. 
Especially, in the case that  

ls5(S[0])=…= ls5(S[3])=0, 
20 round RC6-INFR, RC6-NFR can be distinguishing 
from the random permutation by using lesser complexity 
compared with exhaustive search. 
 
7. Conclusion 
 
     In this paper, we improved the Knudsen and Meier's 
attacking algorithm obtained from X2 tests, and applied 
this to the RC5 encryption algorithm. Then we showed 
the experimental results of attacking the RC5 with 
reduced rounds. Our computational experiments showed 
that RC5 with up to 20 half rounds can be distinguished 
from a random permutation by using 254 chosen 
ciphertext. Moreover, we showed that full round RC5 
with a weak key which is available one in 220 keys is 
distinguishable from random permutation with less than 
complexity of exhaustive key search. Furthermore, we 
constructed an algorithm for key recovery using the 
correlation and showed the computational experiments. 

From our experiments, we concluded that the last round 
key of RC5 with up to 17 half rounds, or RC5 with up to 
full round with respect to a weak key can be recovered 
by using 254 chosen plaintext attack with success 
probability 80%. 
 
     At last, we observed the strength of the simple 
variants of RC6 demonstrated (Contini 1999), that is 
RC6-INFR, RC6-NFR and RC6-I, against our improved 
attacking algorithms. Then we showed RC6-INFR, RC6-
NFR with up to 19 rounds, and RC6-I with up to 15 
rounds are breakable for our improved distinguishing 
algorithm. Moreover we showed full round RC6-INFR, 
RC6-NFR with respect to a weak key existing in a ratio 
of one to 245 are breakable by using our distinguishing 
attack. We remark that further improvement of this 
attack will be considered. It may be also interesting that 
the similar attacks can be applicable or not to another 
type of block cipher, for example MARS. Furthermore, 
it still remain some important problem of how to protect 
or design block ciphers to be secure, especially to have 
provable security, against the attacks by using X2 
statistics, but these are future works. 
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