

CRYPTANALISE ASPECTS ON THE BLOCK CIPHERS OF RC5 AND RC6

Erica Mang, Ioan Mang, Constantin Popescu
University of Oradea, Romania

Department of Computers Science
3-5 Armatei Romane St., 3700 Oradea, Romania

E-mail: emang@uoradea.ro, imang@uoradea.ro, ppopescu@uoradea.ro

Abstract. In August 1999, Knudsen and Meier proposed
an attack to the block cipher RC6 by using correlations
derived from x2 tests. In this paper, we improve the
attack and apply this method to the block cipher RC5
and simplified variants of RC6, and show some
experimental results. We show this approach distinguish
the random permutation and RC5 with of up to 20
rounds by using chosen ciphertexts attack. We also show
our approach for deriving the last round key of up to 17
rounds RC5 by using chosen plaintext attack. Moreover,
we show full rounds RC5 with some weak key can be
broken by using lesser complexity than that of the
exhaustive search. Additionally, this method can be
applicable to simplified variants of RC6, that is, RC6-
INFR, RC6-NFR, RC6-I, we observe the attack to these
block ciphers.

Key words: RC5, RC6, chosen ciphertexts attack, chosen
plaintext attack, weak key

1. Introduction

RC5 is a block cipher designed by R. Rivest in 1994

(Rivest 1995). One of the reasons that many
cryptographers were interested in cryptanalysis of RC5
comes from its simple structure.

Kaliski and Yin evaluated RC5 with respect to

differential and linear crypt-analysis (Kaliski 1995). The
paper shows that linear cryptanalysis is applicable for
versions of RC5 with a small number of rounds. Moriai
et al., found some weak key against linear attack (Rivest
1995). An improvement of Kaliski and Yin's attack by a
factor of up to 512 was given by Knudsen and Meier
(Knudsen 1996). Biryukov and Kushilevitz proposed
drastic improvement of the previous results due to a
novel practical differential approach (Biryukov 1998).
Their attack requires 244 chosen plaintexts which is
smaller than complexity of exhaustive key search. In
their approach, they study more complex differentials
than in previous works, and defined a more general
notation, so called “good pair," with respect to data
dependent rotations. In their method, good pairs were
searched by using Hamming weights of differences for
each round, then the key of last round were derived.

Their attacking algorithm, however, is rather
complicated and it does not seem so easy to distinguish
good pair and others correctly, because of influences of
addition of key to the hamming weights of differentials.

In August 1999, Knudsen and Meier posted to the

internet news an information of their new paper dealing
with cryptanalysis of RC6 (Knudsen et al. 1999). In the
paper, they used extremely different technique from the
previous approach, that is, correlations obtained from x2
test. In their approach, for fixing each of the least
significant five bits in some words of plaintexts and
investigate the statistics of the 10-bit integer obtained by
concatenating each of the least significant five bits in
some words of ciphertexts. To measure the effect of the
distribution of the target bits, they forced the values of
10 bits by taking appropriate plaintexts and they
computed the x2-value of the 10 bit integers, then they
compared to x2-distribution with 1023 freedom, and
distinguished RC6 from a random permutation. They
estimated from systematic experimental results that
version of RC6 whose round is reduced can be
distinguished from a random permutation. Moreover,
they constructed a key-recovery method for RC6 with up
to 15 rounds which is faster than exhaustive key search.

In this paper, we improve the Knudsen and Meier's

attacking algorithm obtained from x2 tests, and apply this
to the RC5 encryption algorithm. Then we show the
experimental results of attacking the RC5 with reduced
rounds. Our computatinal experiments show that RC5
with up to 20 half rounds can be distinguished from a
random permutation by using 254 chosen ciphertext.
Moreover, we show that full round RC5 with a weak key
which is available one in 220 keys is distinguishable from
random permutation with less than complexity of
exhaustive key search.

Furthermore, we construct an algorithm for key

recovery using the correlation and show the
computational experiments. From our experiments, we
conclude that the last round key of RC5 with up to 17
half rounds, or RC5 with up to full round with respect to
a weak key can be recovered by using 254 chosen
plaintext attack with success probability 80%.

At last, we observe the strength of the simple variants
of RC6 demonstrated in (Contini 1999), that is RC6-
INFR, RC6-NFR and RC6-I, against our improved
attacking algorithms. Then we show RC6-INFR, RC6-
NFR with up to 19 rounds, and RC6- I with up to 15
rounds are breakable for our improved distinguishing
algorithm. Moreover we show full round RC6-INFR,
RC6-NFR with respect to a weak key existing in a ratio
of one to 245 are breakable by using our distinguishing
attack.

2. Preliminary

 In this section, we note some notations and
definitions. At first, we recall the x2 tests for
distinguishing a random sequence taking from uniform
distribution and non-random sequence (Contini 1999).
Proposition 2.1. Let A be a set {a0,…,am-1). Let
X=X0,…,Xn-1 be independent and identically distributed
random variables taking from the set A uniformly. Let
Naj (X) be the cardinality of variables in X which is equal
to aj.

Table 1. The chi-square distributions with and 1023 degrees of freedom
 Level 0.5 0.90 0.95 0.99 0.999
 X2 30.33 41.42 44.99 52.19 61.09

X2 distribution of 31 degrees of freedom

 Level 0.5 0.90 0.95 0.99 0.999
 X2 1022.0 1080.94 1098.92 1130.89 1168.85

X2 distribution of 1023 degrees of freedom

The X2 statistic X2(X) of X is defined by

X2(X)= ()
21m

0i
ai m

nXN∑

 −

−

=

Then, the distributions of X2(X) can be approximated to
the chi-square distribution with m-1 degrees of freedom
for large n.

 Table 1 shows the chi-square distributions with 31
degrees and 1023 degrees of freedom, which we will use
in the following sections.

 For example, level=0:999 and _2 = 61.09 in Table 1
means that X2 values of 99.9% of random sequences
with n elements taking from the set of 32 elements
uniformly will not exceed 61.09 for large n. We
comment that, for X2 tests, n should be large enough
such that each expected value of Nai (X) (that is, n/m) is
larger than 4 or 5, in practical.

ls5(A): least significant 5 bits of a 32 a bits word A
(A, B): plaintext of RC5 (32 bits * 2)
(A’, B’): ciphertext of RC5 (32 bits * 2)
(Ai, Bi): output of ith half round, especially,
 (A0, B0) = (A, B) and (Ar, Br) = (A, B)
xi: amounts of data dependent rotation in the i-th half
round, that is ls5(Ai)
yi: xr-i+1

3. X2 Tests of RC5

 In this section, we explain the X2 tests for plaintexts
and ciphertexts of RC5. The notations are followed from
the previous section. We examine 4 different types of X2
tests. For each test, we observe the X2 statistics of 5 bit in
the plaintexts or ciphertexts.
Test1: Fix least significant 5 bits of plaintext A to 0, and
compute X2 of least significant 5 bits of ciphertext A’.
Test2: Fix least significant 5 bits of plaintext A and B to
0 and compute X2 of least significant 5 bits of ciphertext
A’.

Test3: Fix least significant 5 bits of ciphertext B’ to 0,
and compute X2 of least significant 5 bits of plaintext B.
Test4: Fix least significant 5 bits of ciphertext A’ and B’
to 0 and compute X2 of least significant 5 bits of
plaintext B.

 If RC5 was ideal random permutation, the
distribution of the X2 value is similar to the X2
distribution of 31=25-1 degrees of freedom. So, we set
up the threshold by 45 in order to distinguish from a
random permutation. The sequence whose X2 value
extends more than 45 can be distinguished from a
random permutation in a probability of 95 %. (Table 1).

 Table 2 shows the results of X2 tests. Each entry of X2
value is an average of 100 X2 values of different 100
keys.

 The numbers denoted by bold character are the X2
values at the first coming over 45. These experiments
show that each additional two half rounds require about
26 times as many texts to get about the same X2 value.
The results of the Test 1 and Test 3 show that the each
number of required data is almost same. On the other
hand, each the number of required elements in Test 2 is
23 times as many as corresponding one of Test 4,
because of the influences of the initial key S[1]. It means
that if the value of data dependent rotation at the first
round is fixed 0, the X2 value of the target bits in the
output of last round becomes much larger.

4. Distinguishing Algorithm and Weak Key

 By the examination described in the previous section,
we conclude that the better way in order to distinguish
the RC5 encryption and a random permutation in the
four conditions described in Test1 to Test4, is the
condition in Test4. We consider a following algorithm. It
is one of the chosen ciphertext attacks.

Algorithm 4.1. (Distinguishing attack)

Input: RC5 algorithm permutation, n: a number;
Output: answer that Input is RC5or not ;

for i from 1 to n
 Let A/ ,B/ be a random number such that
 ls5(A/) = ls5(B/) = 0;

(A, B) = decrypted message of (A/, B/);
count up the counter map[ls5(B)];

 calculate X2 of the map;
 if x2≥45
 then return the answer “Input is RC5”;
 else return the answer “Input is a random
 permutation“;

Table 2. Evaluations of the X2 tests (Test1,...,Test4, average of 100 keys)

 Test 1(fix ls5(A) = 0) Test 2 (fix ls5(A) = ls5(B) = 0)

4 half rounds 4 half rounds
#data 210 211 212 213 214 215 #data 26 27 28 29 210 211

X2 30 33 37 41 47 66 X2 31 31 34 40 57 82
6 half rounds 6 half rounds

#data 216 217 218 219 220 221 #data 212 213 214 215 216 217

X2 30 31 34 41 52 70 X2 29 32 35 40 47 61
8 half rounds 8 half rounds

#data 222 223 224 225 226 227 #data 218 219 220 221 222 223

X2 29 31 31 34 46 63 X2 32 32 36 42 55 81
10 half rounds 10half rounds

#data 228 229 230 231 232 233 #data 224 225 226 227 228 229

X2 31 31 32 35 51 72 X2 32 33 36 42 55 81

 Test 3 (fix ls5 (A/) = 0) Test 4 (fix ls (A/) = ls5(B/) = 0)

4 half rounds 4 half rounds
#data 210 211 212 213 214 215 #data 23 24 25 26 27 28
X2 31 32 34 38 47 59 X2 12 11 39 48 62 94
6 half rounds 6 half rounds
#data 216 217 218 219 220 221 #data 29 210 211 212 213 214
X2 30 33 35 40 49 66 X2 32 34 36 39 47 60
8 half rounds 8 half rounds
#data 222 223 224 225 226 227 #data 215 216 217 218 219 220
X2 29 31 31 34 46 63 X2 32 34 38 44 65 101
10 half rounds 10 half rounds
#data 228 229 230 231 232 233 #data 221 222 223 224 225 226
X2 30 31 33 35 50 69 X2 32 34 35 42 56 85

 In order to estimate the complexity of Algorithm 4.1,
we compute the number of required elements that the X2
value exceeds the 45 more precisely, for each rounds of
RC5. Table 3 shows the results. From Table 3, we
calculate the relation between the number of required
elements and the number of rounds by using the method
of least squares;

log2(#data) = α + βr + ε,

where r is a number of half rounds and ε is a bias. Then
we have α=-5.33, β=2.97, ε=0.17. This means that each
additional one half rounds, Algorithm 4.1 requires
almost 23 times as many texts to get about the same X2

value on average.

 Table 4 shows that the estimated number of required
texts for Algorithm 4.1. In Algorithm 4.1, since the 10
bits in cipher text bits are fixed zero, the total amounts of
admissible texts is 254. From Table 4, (by omitting the
small bias) our distinguish attack can be applicable
reduced RC5 with up to 20 half rounds.

 Now, we consider the weak key. From the
assumption of Algorithm 4.1, amount of a data

dependent rotation in the last round is fixed 0. Moreover
if the condition ls5(S[r+1])=0 holds, the amount of
rotations of last two rounds are 0. In this case, the last
round does not influence the X2 value, that is the security
level is equal to that of r-1 rounds RC5. This case
happen every one in 25 keys. In the same way, if the
condition

ls5(S[r + 1]) = … = ls5(S[r – t + 2]) = 0

holds, the security level against Algorithm 4.1 is as same
as r - t rounds RC5. There is one weak key in 25t.

 Since, it is easy to check whether the key is a weak
key or not, we can find the following weak key.

key0 = {5b,2d,16,0b,7a,3d,9e,cf,7e,3f,9f,cf,af,d7,eb,75}16

 In this key, we can check:

ls5(S[19])=…= ls5(S[25])=0.

Therefore the 24 half round RC5 encryption with key0
has the same security as 17=24-7 half rounds RC5. From
Table 4, this RC5 encryption algorithm is distinguished
from random permutation in 245.16 numbers of data.

Table 3. Precisely examination of x2 and number of data in Test 4
half rounds 6 7 8 9 10 11 12
data (log 2) 12.32 15.71 18.58 21.31 24.09 27.81 30.17
 X2 45 46 46 45 45 46 45

Table 4. Estimation of the number of required text for distinguishing attack

#half rounds

13

14

15

16

17

18

19

20

21

22

23

24

#data (log2) 36.25 36.25 39.22 42.19 45.16 51.1 51.1 54.07 57.04 60.01 62.98 65.95
1 in 25 keys 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01 62.98
1 in 210 keys 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01
1 in 2 15 keys 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04
1 in 2 20 keys 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07
 1 in 225 keys 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1
 1 in 230 keys 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13
 1 in 235 keys 12.49 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16
 1 in 240 keys 9.52 12.49 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19

5. Key Recovery Algorithm

 In this section, we propose a key recovery algorithm
by using the X2 statistics of RC5 with r half rounds.

5.1. Knudsen, Meier's Approach

 Knudsen proposed an algorithm for key recover of
the extended key of the first round of RC6 by using X2
statistics. His approach uses the property that the 0
amounts of the first rounds data dependent rotation
growths the X2 value. First of all, we try to modify this
approach to a key recovery of RC5.

Algorithm 5.1. (Knudsen,Meier-modified)

Input: RC5 encryption algorithm of unknown secret
key

Output: candidate of ls5(S[1])
for each plaintext (A, B),where ls5b(A)=0
 compute ciphertext (A/, B/);

 s0 = 32 - ls5(B/) mod 32;
 y1 = ls5(A/);
 count up the memory map [s0][y1];
for each s0
 X2[s0] = X2 of map [s0];
return s such that X2 [s] = max {X2[s0]|s0 = 0,…,31};

 In order to obtain the high success rate of the above
key recovery algorithm, the average of X2 is far smaller
than the amount of X2 in the case of zero rotation.

 Table 5 shows the experiment of X2 value of each
rotation nearly equal to 0. Though the amount of X2 at
the 0 rotation always highest, X2 values near of 0 still
large, so the average of X2 is not small. By this reason,
we cannot obtain high success rate of this algorithm.

 In fact, from the experimental results of the
algorithm, we have only 20-30% of success probability.

Table 5. Data dependent rotation of lst round and X2 values 6 half round of RC5 (average of 500 tests)

date 26 27 28 29 30 31 0 1 2 3 4 5 6
212 31 31 32 34 36 38 43 40 35 33 31 31 31
213 31 32 33 39 41 45 55 49 39 38 33 31 31
214 32 33 37 47 51 61 79 69 48 46 35 33 32
215 34 35 44 62 73 91 127 106 67 61 40 35 35

5.2. Recovering the Least Significant 5 Bits of the Last
Round Key
 In this section, we show an algorithm for recovering
the least significant 5 bits of the last round key S[r+1] by
using chosen plaintext attack.

 Suppose the least significant 5 bits of each words of
plaintexts is fixed 0. (Namely (ls5(A)=ls5(B)=0).) In this
section, we only use the ciphertexts (A’, B’)
corresponding to the plaintext (A,B) which satisfy the
condition ls5(A’)=0. (In the next section, we also use the
texts such that ls5(A’)≠0 for constructing the whole
procedure recovering the last round 32 bits key). We

note that the amount of last round data dependent
rotation y1 is always 0. Then, we have:

y2=ls5(B’)-ls5(S[r+1])mod32.

 Therefore, ls5(Ar-2=((A’-S[r])«y2) mod 32. Since S[r]
is fixed value, the X2 values of ((A’-S[r])«y2) mod 32
and (A’«y2) mod 32 are almost same. In general, the X2

statistics of ls5(Ar-2) is much larger than X2 statistics of
ls5(Ar). Now, we consider the X2 value of ls5(Ar-2). We
mention that, since we suppose that ls5(A’)=0, when y2
satisfies y2≤4 or 28≤y2, some of bits in the ls5(Ar-2) are
fixed. Therefore, it is meaningless for compute the X2
value of ls5(Ar-2) except for the case of 5≤y2≤27. The
algorithm is described in Algorithm 5.2. The memory

requirement of this procedure is 215 words (at most 128
Kbyte), and the dominant step of computational
complexity is the encryption stage.

Algorithm 5.2. (Shimoyama, Takeuchi, Hayakawa (1))

Input: RC5 encryption algorithm of
 unknown key;
Output: candidates ls5 (S[r + 1]);
for each plaintext (A,B), where ls5b(A)=ls5b(B) = 0
 compute ciphertext (A′, B′);
 if ls5(A′) = 0
 for each candidates s0Є{0,…,31}
 of ls5(S[r + 1])
 y2 = ls5(B′) – s0 mod 32;
 if y2 ≥ 5 and y2 ≤ 27;
 z2 = ls5(A′ >>> y2);
 count up the memory map[so][y2][z2];
for each s0, y2

 χ2 [s0][y2] = χ2 of map[s0][y2];
for each s0

 ave[s0] = average of χ2 [s0][y2];
return s such that ave[s]=max{ ave [s0]|so=0,…,31};

Occasionally, there is a case that the each counter
satisfied the condition

map[s0][y2] = … = map[s0][y2][31] = 0

for some s0, y2. In this case, the correct key is (y2+s0)
mod 32 in high probability. So return y2+s0 mod 32. By
using this criterion, we can easily obtain the solution, in
this special case.

 For 6 rounds, we have success probability more than
50% by using 218 data, and 70% by using 220. Moreover,
the probability that the bias is at most ± 1, is more than
80% with 220 data, and 90% with 221 data. In 8 rounds,
for each success probability, the corresponding number
of plaintexts is increased by a constant factor of about 26.

5.3. Recovery of the Last Round Key
 In this section, we construct an algorithm for
recovering the all bits of last round key. Suppose
ls5(A’)=i. Then the amount of last round data dependent
rotation y1 is equal to i, so y2=((B’-S[r+1])»i)⊕i mod32.
Let si=(S[r+1])»i) mod 32. Since that the difference of yi
and ((B’-(si«i))»i)⊕i mod 32 is at most ±, we use ((B’–
(si«i))»i)⊕i mod32 instead of yi. The algorithm,
described below, is constructed by the same way
described in the previous section.

Algorithm 5.3. (Shimoyama, Takeuchi, Hayakawa (2))
Input: RC5 encryption algorithm of
 unknown secret key;
Output :candidates S[r+1];
for each plaintext (A′,B′), where sl5b(A) = ls5b(B) = 0
 compute ciphertext (A′,B′);
 y1 = ls5(A′);
 for each candidates sy1Є{0,…,31}
 of ls5(S[r+1]>>>y1)
 y2= ls5((B′-(sy1<<<y1)) mod32;
 if y2 ≥ 5 and y2 ≤ 27;
 z2 = ls5(A′ >>> y2);

 count up the memory
map[y1][sy1]][y2][z2];
 for each y1, sy1, y2

 χ2[y1][sy1][y2]= χ2 of map[y1][sy1][y2];
 for each y1, sy1

 ave[y1][sy1]= average of χ2[y1][sy1][y2];
 for each y1

 key[y1]=s0 such that
ave[s0]=max{ave[i]|i=0,…,31};
concatenate key[y1] and derive 32 bit key S;
 return S;

 We comment that for concatenate the 32 candidates
of 5bits to 32 bit integer, we can use any error correcting
algorithm, by using the property that each 5 bits solution
is different from the correct value at most ±1 in high
probability.

 At the end of this section, we discuss the weak key.
The key recovering algorithm described in this section,
we suppose the least significant 5 bits of each words of
plaintexts are fixed zero. From the same reason of the
existence of weak keys against distinguishing attack, if
the condition ls5(S[0])=…=ls5(S[t])=0 holds, the
security of the r rounds RC5 encryption using this key is
as same as the security level of r-t+1 half round RC5.
For example, in the case that the key satisfy

ls5(S[0])=…=ls5(S[8])=0,

24 round RC5 with this key has the same security of 17
half rounds. This key can be found every one in 245 keys.

6. Application to the Simplified Variants of RC6

 Contini presented the some simplified variants of
RC6, that is RC6-I, RC6-NFR, RC6-INFR, and the
cryptanalysis to these families. Knudsen proposed the
attacking method to RC6 in (Knudsen et al. 1999).

 In this section, we consider the security against the
attack using X2 statistics for the simplified variants RC6-
I, RC6-NFR, RC6-INFR. Each variant has reduced
round function F compared with RC6 (Table 6). Every
one of simplified variants is not one of the real world
block cipher, but prototype block cipher for comparing
the security with that of RC6, however, we think that
cryptanalysis of these variants may be meaningful.

 We mention that the least significant 5 bits of the
output of the round function of 3 variants are obtain from
only 5 input bits. Therefore, we can apply the Algorithm
5.2 to each variant with a little modification. The
remaining problem is a relation of X2 value and number
of rounds.

 Let observe the following two tests.
Test1: Fix least significant 5 bits of plaintext A and C to
0, and compute X2 of least significant 5 bits of ciphertext
A and C.
Test2: Fix least significant 5 bits of plaintext A, B, C and
D to 0, and compute X2 of least significant 5 bits of
ciphertext A and C.

Table 6. Round function F of variants of RC6
 RC6-INFR RC6-1 RC6-NFR RC6

F(x)= x x<<<5 x ×(2x+1) (x × (2x+ 1))<<<5

Table 7. X2 tests to the RC6 variants
Tests 1 : (fix lsb(A), lsb(C))

#rounds INFR NFR I RC6
2 214 (1159) 213 (1122) 213(1107) 214(1178)
4 225(1152) 226 (1126) 229 (1171) 230(1156)

Test 2 : (fix lsb(A), lsb(B), lsb(C), lsb(D))
#rounds INFR NFR I RC6

2 27 (1193) 27(1122) 213(1100) 213(1100)
4 216 (1109) 217(1102) 222(1141) 229(1171)
6 228 (1164) 230(1141)

 In these tests, we set up the threshold by 1099. The
sequence whose X2 value extends more than 1099 can be
distinguished from a random permutation in probability
95 %. (Table 1) Table 7 shows the results of the first
number of X2 coming up with 1099, and corresponding
the number of data. (They are averages of 50 times
computer experiments.)

 In the roughly consideration, from Table 7, we
estimate that each additional 2 rounds require 212, 213 and
216 times as many number of texts to obtain the same X2
value for the variants RC6-INFR, RC6-NFR and RC6-I,
respectively against the Test 1. For the results of Test 2,
the condition in the Test 2 makes decreasing the initial
values of the number of required data about 29, 29, 27
times of those conditions in Test 1, for RC6-INFR, RC6-
NFR and RC6-I. By using either the assumption used in
Test 1, Test 2, it is estimated that we can cryptanalysis
up to 19 rounds of RC6-INFR, RC6-NFR, and up to 15
rounds of RC6-I. Moreover, in assumption of Test 2,
there is a weak key as the same reason of the case in
RC5. For example, a key satisfied the following
condition has the same security level as 20-i round,

ls5(S[0]) = … = ls5(S[2i + 1]) = 0.
Especially, in the case that

ls5(S[0])=…= ls5(S[3])=0,
20 round RC6-INFR, RC6-NFR can be distinguishing
from the random permutation by using lesser complexity
compared with exhaustive search.

7. Conclusion

 In this paper, we improved the Knudsen and Meier's
attacking algorithm obtained from X2 tests, and applied
this to the RC5 encryption algorithm. Then we showed
the experimental results of attacking the RC5 with
reduced rounds. Our computational experiments showed
that RC5 with up to 20 half rounds can be distinguished
from a random permutation by using 254 chosen
ciphertext. Moreover, we showed that full round RC5
with a weak key which is available one in 220 keys is
distinguishable from random permutation with less than
complexity of exhaustive key search. Furthermore, we
constructed an algorithm for key recovery using the
correlation and showed the computational experiments.

From our experiments, we concluded that the last round
key of RC5 with up to 17 half rounds, or RC5 with up to
full round with respect to a weak key can be recovered
by using 254 chosen plaintext attack with success
probability 80%.

 At last, we observed the strength of the simple
variants of RC6 demonstrated (Contini 1999), that is
RC6-INFR, RC6-NFR and RC6-I, against our improved
attacking algorithms. Then we showed RC6-INFR, RC6-
NFR with up to 19 rounds, and RC6-I with up to 15
rounds are breakable for our improved distinguishing
algorithm. Moreover we showed full round RC6-INFR,
RC6-NFR with respect to a weak key existing in a ratio
of one to 245 are breakable by using our distinguishing
attack. We remark that further improvement of this
attack will be considered. It may be also interesting that
the similar attacks can be applicable or not to another
type of block cipher, for example MARS. Furthermore,
it still remain some important problem of how to protect
or design block ciphers to be secure, especially to have
provable security, against the attacks by using X2
statistics, but these are future works.

References

A. Biryukov, E. Kushilevitz: Improved Cryptanalysis of
RC5, Advances in Cryptology – Eurocrypto’98, Lecture
Notes in Computer Science 1403, pp. 85-99, Springer
Verlag, 1998.
S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin:
Improved Analysis of Some Simplified Variants of RC6,
Fast Software Encryption, Lecture Notes in Computer
Science, 1636 pp.1-16,Springer Verlag, 1999.
B. Kaliski, Y. Yin: On Differential and Linear
Cryptanalysis of the RC5 Encryption Algorithm,
CRYPTO’95, Lecture Notes in Computer Science 963,
pp. 171-184, Springer-Verlag, 1995.
L. Knudsen, W. Meier, Improved Differential Attacks on
RC5, Crypto’96, Lecture Notes in Computer Science
1109, pp. 216-228, Springer-Verlag, 1996.
L. Knudsen, W. Meier, Correlations in RC6, 1999.
http://www.ii.uib.no/~larsr/papers/rc6.ps
R. Rivest, “The RC5 Encryption Algolithm”, Fast
Software Encryption, Lecture Notes in Computer
Science 1008, pp. 86-96, Springer-Verlag, 1995.

