

TWO DIFFERENT ARCHITECTURES FOR THE HARDWARE IMPLEMENTATION OF
THE RIJNDAEL ALGORITHM

Erica Mang

University of Oradea, Romania
Department of Computers Science

3-5 Armatei Romane St., 3700 Oradea
E-mail: emang@uoradea.ro

Abstract. Two architectures and VLSI implementations
of the AES Proposal Rijndael, are presented in this
paper. These alternative architectures are operated both
for encryption and decryption process. They reduce the
required hardware resources and achieve high-speed
performance. Their design philosophy is completely
different. The first uses feedback logic and reaches a
throughput value equal to 259 Mbit/sec. It performs
efficiently in applications with low covered area
resources. The second architectures is optimized for
high-speed performance using pipelined technique. Its
throughput can reach 3.65 Gbit/sec.

Key words: Rijndael, VLSI, feedback logic, pipelining,
throughput

1. Introduction

In our days, the need for secure transport protocols

seems to be one of the most important issues in the
communication standards. Of course, many encryption
algorithms support the defense of private
communications. However, the implementations of this
algorithm is a complicated and difficult process and
sometimes results in intolerant performance and
allocated resources in hardware terms. The explanation
for this fact is because these encryption algorithms were
designed some years ago and for general cryptography
reasons. In recent years, new flexible algorithms
specially designed for the new protocols and applications
have been introduced to face the increasing demand for
cryptography.

In October of 2000, the National Institute of

Standards and Technology (NIST) announced the cipher
Rijndael as the Advanced Encryption Standard (AES) in
order to replace the aging Data Encryption Standard
(DES) (Schneider 1996).

In the Third Advanced Encryption Standard (AES)

Candidate Conference (AES 2000), papers from
different research groups were presented (Dandalis et al
2000; Elbirt et al 2000; Gaj et al 2000; Weeks et al 2000;

Gaj et al 2001). The main purpose of these works was
the evaluation of the AES finalist algorithms in terms of
hardware implementation performance. In order to
achieve this, all the authors used general purposes
architectures and not specialized designs for each
algorithm implementation. This is a fair methodology for
comparison of different algorithms. On the other hand,
this way is not well-suited to the implementation of each
algorithm separately. In addition, in two of these works
(Dandalis et al 2000; Elbirt et al 2000) only the
encryption mode of operation was implemented and not
the decryption. References (Elbirt et al 2000; Gaj et al
2000; Gaj et al 2001) do not support the on-chip-
generation of the necessary for the algorithm encryption-
decryption keys. In other words, the proposed designs do
not support the completed operation of the algorithms
and perform inefficiently in terms of both the encryption
and decryption mode of data transformation.

Especially for the Rijndael algorithm, other works

(Kuo et al 2001; Fischer et al 2001; Mroczkowski et al
2001) have been published. The proposed work in (Kuo
et al 2001) is an uncompleted implementation of the
algorithm’s total operation. It supports only the
encryption process. In (Mroczkowski et al 2001), two
different designs are introduced, one for encryption and
one for decryption. They have been implemented in two
separate FPGA devices. This is not right way for the
implementation of a block cipher. It is not efficient for
the implementation of communications protocols,
especially in integrated circuits with low allocation
resource specifications. The proposed implementation in
(Mroczkowski et al 2001) needs two different FPGA
devices in order to ensure the complete operation of the
algorithm.

In this paper, two architectures and VLSI

implementations of the AES proposal are presented.
These alternative designs operate both for encryption
and decryption process in the same device. They are
proposed in order to reduce the required hardware
resources and to achieve high-speed performance. In the
first design, the appropriate key expansion unit is

integrated with the encryption/decryption core.
Performance analysis and comparison results with other
works are also reported.

2. The Rijndael Encryption/Decryption Algorithm

 A new block encryption algorithm called Rijndael has
been developed and published by Daemen and Rijmen
(Daemen et al 2001). This algorithm is an iterated block
cipher with variable block length and a variable key
length. The block and the key length can be
independently specified to 128, 192, or 256 bits. The
number of algorithm rounds depends on the block and
key length.

 The different transformations of the algorithm
architecture operate on the intermediate result, called
State. The State can be pictured as a rectangular array of
bytes. This array has four rows. The number of columns
is called Nb and it is equal to block length divided by 32.
The Key is also considered as a rectangular array with
the same number of rows as State. The number of
columns is equal to the key length divided by 32. This
number is denoted as Nk. The number of rounds, Nr,
depends on the values Nb and Nk. For block and key
length equal to 128 bits, both values of Nb and Nk are
equal to four and the number of rounds Nr is defined as
10. These specifications are served by the proposed
implementations, which will be analyzed in detail in the
next paragraphs.

 A basic round transformation relies on combining
operations from four fundamental algebraic functions
that operate on arrays of bytes. These transformations
are:

• SubBytes: Operates in each byte of the State
independently. This mathematical substitution is
constructed of the compositions of two
transformations: multiplicative inverse in GF(28)
and an affine mapping over GF(2) inverse in
GF(28), too, and the inverse of the affine mapping
transformation over GF(2).

• ShiftRow: Cyclically shifts the rows of the State
over different offsets. The operation is almost the
same in the decryption process except for the fact
that the shifting offsets have different values.

• MixColumn: In this transformation, the columns of
the State are considered as polynomials over
GF(28) and are multiplied with a fixed polynomial
 c(x)=´03´x3+´01´x2 +´01´x+´02´
for encryption and with the polynomial
 d(x)=´0B´x3+ +´0D´x2+´09´x+´0E´
for the decryption process.
Both polynomial multiplications are modulo
(x4+1).

• KeyAddition: In this operation, the round key is
applied to the State by simple bit by bit XOR.
KeyAddition is the same for the decryption process.

 Before the first round, a key addition layer is applied
to the cipher data. This transformation is stated as the
algorithm initial round key addition. The final round of
the cipher is equal to the basic round with the

MixColumn step removed. A key expansion unit is
defined in order to generate the appropriate key, for
every round, from the initial key value. When all rounds
of transformation are completed, a cipher data block
with the same length as the plain data has been
generated.

 The decryption process has the same structure as the
encryption architecture. The only main difference is that
for every function that is used in the basic round, the
mathematical inverse of it is taken. The key expansion
unit performs almost the same operation with the
encryption process. The only difference is that the
decryption of the round keys is obtained by applying the
inverse MixColumn to the corresponding round keys.
The initial value of the key for the decryption operation
is changed. The appropriate basic decryption key must
be loaded in the key buffer before the decryption
beginning (Daemen et al 2001).

3. Hardware Architectures. VLSI Implementations

 Two alternative architectures are proposed for the
Rijndael algorithm in order to reduce the required
hardware resources and to achieve high-speed
performance. Both architectures serve the encryption and
decryption process in the same hardware device.

Figure 1. Basic block round architecture

Figure 2. Key Expansion Unit architecture

3.1. Basic Block Round
 The architecture of the basic block round is shown in
Figure 1. As was already mentioned in the previous
section, each basic round of the algorithm is composed
of basic building blocks: SubByte, ShiftRow,
MixColumn, and KeyAddition. The structure of
SubBytes and MixColumn turned out to be challenging.

3.2. First Architecture with Implemented Key Expansion
 The first proposed architecture is shown in detail in
Figure 2. This architecture performs both the encryption
and the decryption process, with input plaintext and key
vector equal to 128 bit. The algorithm specifies 10
rounds for the State transformation and an extra initial
round key addition.A key buffer of 128-bit width is used
for the key storage.

 In the initial round key addition transformation, the
input state is XOR-ed with the input key. In the first
step, the initial round key addition is executed and the
key for the first round is calculated. In a clock cycle, one
transformation round is executed and, at the same time,
the appropriate key for the next round is calculated. The
whole process reaches the end when 10 rounds of
transformation are completed. The input Register is used
to keep the transformed State after every round of
operation. The State is forced to this register with the use
of a feedback technique. The Basic Block Round
architecture is shown in Figure 1 and has been described
in detail in Section 3.1.

 The Key Expansion Unit architecture is illustrated in
Figure 2. The round keys are derived from the initial
key. Two are the basic component of this unit, the Key
Transformation and the Round Key selection. The total
number of the round key bits is equal to the block length,
multiplied by the number of rounds plus one. The

proposed implementation with 128 bit block length and
10 rounds generates 10*128 bit round keys. The round
keys are taken from the initial key in a complicated way,
defined in detail in the algorithm specification (Daemen
et al 2001).

 The algorithm demands a different operation mode of
the key expansion unit, between encryption and
decryption processes. The basic difference is that, in
decryption, the round keys are obtained by applying the
inverse MixColumn to the corresponding round keys.

 The total execution time is one clock cycle for every
round, plus one clock cycle for the initial round key
addition. So, the system needs 11 clock cycles in order to
completely transform a 128 bits data clock.

 The Key Expansion Unit architecture is illustrated in
Figure 2. The round keys are derived from the initial
key. Two are the basic component of this unit, the Key
Transformation and the Round Key selection. The total
number of the round key bits is equal to the block length,
multiplied by the number of rounds plus one. The
proposed implementation with 128 bit block length and
10 rounds generates 10*128 bit round keys. The round
keys are taken from the initial key in a complicated way,
defined in detail in the algorithm specification (Daemen
et al 2001).

 The algorithm demands a different operation mode of
the key expansion unit, between encryption and
decryption processes. The basic difference is that, in
decryption, the round keys are obtained by applying the
inverse MixColumn to the corresponding round keys.

 The total execution time is one clock cycle for every
round, plus one clock cycle for the initial round key

addition. So, the system needs 11 clock cycles in order to
completely transform a 128 bits data clock.

3.3 Second Architecture Using RAM for Key Storage

 The second proposed architecture is shown in Figure
3. The main characteristics of this are:

1) the pipelining used technique and
2) the usage of a RAM for the key storage and
loading.

 It is not possible to apply pipelining in many
cryptographic applications. However, the Rijndael
cryptographic algorithm internal architecture provides
the possibility of being implemented with pipelining
technique. The pipelining architecture offers the benefit
of high-speed performance. The implementation can be
applied in applications with hard throughput needs. This
goal is achieved by using a number of operating blocks
with a final cost to the covered area.

 The proposed architecture uses 10 basic round blocks,
which are cascaded by using pipeline registers. In this
architecture, 10 blocks of data can be transformed at the
same time. The main disadvantage of the second
proposed design is the increased required effective area.
In order to face this problem, RAM was used for the key
storage.

 Many FPGAs provide embedded RAM, which many
be used to replace the Key Expansion Unit and the
internal buffer of these architecture for the initial key. In
this way, the appropriate key for each round can be
addressed from the RAM. External RAM blocks can also
be used. The size of RAM megacells can be
customizable to fit the application demands in terms of
the key length.

 In such architectures the switching time of the RAM
is a factor that has to be considered in the total
performance timing measurements.

Figure 3. Architecture using RAM for key loading

4. Performance Analysis

 Each one of the proposed architectures was
implemented by using VHDL, with structural description
logic. Both implementations were simulated for the
correct encryption and decryption operation using the
test vectors provided by the AES submission package
(AES 2000). The VHDL codes of the two designs are

synthesize, placed and routed using FPGA devices of
Xilinx (Virtex) (Xilinx 2001). The two architectures
were simulated again for the verification of the correct
functionality in real time operating conditions.

The measurements of the performance analysis are

shown in Table 1. Measurements from other designs are
added in the same table.

 The first architecture was optimized with covered
area constraints. Xilinx Virtex XCV300BG432 was
selected for this architecture implementation. The
throughput reaches the value of 259 Mbit/sec for both

encryption and decryption process. This architecture
operates with an external clock with frequency of 22
Mhz. In the proposed architecture, the critical path is 45
ns.

Table. 1. The measurements of the performance

Arch. Proc. FPGA CLB Fre. Thr.
First En/De XCV300BG560 2358 22 259

Second En/De XCV1000BG560 17314 28.5 3650
(Dandalis et al 2000) Encr. Xilinx 5673 - 353

(Elbirt et al 2000) Encr. XCV1000BG560 5302/10992 14.1/31.8 300/1940
(Gaj et al 2000) En/De Xilinx 2902 25.9 331

(Weeks et al 2000) En/De ASIC 35x106um2 - 265
(Kuo et al 2001) Encr. ASIC 3.96 mm2 100 910

(Fischer et al 2001) En/De Altera 845 LE - 750
(Mroczkowski et al 2001) Decr. Altera 2885 41.5 248

The throughput is calculated with the following

formula:

Throughput=block_size*frequency/total clock cycles (1)

The transformed block size is 128 bit and the

frequency is 22 Mhz. The necessary clock cycles for one
block encryption or decryption are 11.

For the second pipelining architecture, the device has
128k bits of embedded RAM, divide in 32 RAM blocks,
that are separate from configured to provide a maximum
of 384K bits of RAM independent of the supported
embedded RAM. The Virtex block RAM also includes
dedicated routing to provide an efficient interface with
both Configurable Logic Blocks (CLBs) and other block
RAMs.

The throughput in the pipelining architecture is give
by:

 Throughput= block_size/Tclkbasic (2)

where Tclkbasic is he delay of a single round, including
register delay. Tclkbasic is 35 ns. The width of the
transformed block size is 128 bits. The second
architecture achieves throughput 3.65 Gbit/sec. The
external clock frequency is 28.5 Mhz. All the compared
architectures operate with data and key block width of
128 bits. Someone could claim that the proposed first
architecture has a little bit slower performance at about
10, 15 percent compared with the other architectures.
Nevertheless, this is a physical result of the algorithm
philosophy and not a tradeoff. In this cryptographic
algorithm, the key expansion unit is partially modified in
the case of decryption process. Especially, as the
Rijndael introducers clarify in their AES-proposal
specifications (Daemen et al 2001), the InvMixColumn
has to be applied to all round keys except the first and
the last one, during the decryptions process. In our first
architecture proposed, the critical path is specified of the
key expansion unit. In order to have a hardware
implementation that supports both encryption and
decryption the critical path of the key expansion unit for
the slower process defines the critical path of the total
system.

The two proposed architectures support encryption
and decryption in the same dedicated hardware device.
So, in a comparison attempt, in hardware performance
with other architectures that support only encryption
(Dandalis et al 2000; Elbirt et al 2000), these special
algorithm characteristics must be considered. Some other
designs (Elbirt et al 2000; Gaj et al 2000) do not support
the appropriate key scheduling unit in the implemented
device. In the first architecture proposed, the appropriate
key expansion unit has been integrated in the same
FPGA device. This extra feature of these architecture
adds, of course more allocated hardware recourses and
decreases the algorithm core performance.

5. Conclusions

Two different philosophies of VLSI architectures for
the design and implementation of the Rijndael
encryption algorithm have been presented.

The first uses feedback logic and reaches throughput

value equal to 259 Mbit/sec. This architecture supports
key expansion unit in the same device and performs
efficiently in applications with low covered area
resources.

The second is optimized for high-speed performance

using pipelining technique with high data throughput of
3.65 Gbit/sec.

The resulting VLSI circuits achieve data rates

significantly high, supporting both operation processes
(encryption/decryption) of Rijdael algorithm. They can
be applied to online encryption/decryption needs of high
speed networking protocols like Asynchro-nous Transfer
Mode (ATM) or Fiber Distributed Data Interface
(FDDI).

References

”Third Advanced Encryption Standard (AES) Candidate
Conf.”, 2000. http://crscr.nist.gov/encryption/aes//round
2/conf3/aes3conf.htm.

J. Daemen and V Rijndael, “AES Proposal: Rijndael”,
2001.
A. Dandalis, V.K. Prasanna, and J.D.P. Rolim, “A
Comparative Study of Performances of AES Final
Candidates Using FPGAs,” Proc. Third Advanced
Encryption Standard (AES) Candidate Conf., Apr. 2000.
A.J. Elbirt, W. Yip, Bchetwynd, and C. Paar, “An FPGA
Based Performance evaluation of the AES Block Cipher
Candidate Algorythm Finalists,“ Proc. Third Advanced
Encryption Standard (AES) Candidate Conf., Apr. 2000.
V. Fischer and M Drutarovsky, “Two Methods of
Rijndael Implementation in Reconfigurable Hardware”,
Proc. CHESS 2001, May 2001.
K.Gaj and P. Chodowiec, “Comparison of the Hardware
Performance of the AES Candidates Using
Reconfigurable Hardware,” Proc. Third Advanced
Encryption Standard (AES) Candidate Conf., Apr. 2000.
K. Gaj. And P. Chodowiec, “Fast Implementation and
Fair Comparison of the Final Candidates for Advanced

Encryption Standard Using Field Programmable Gate
Array” , Proc. RSA Security Conf., Apr. 2001.
H. Kuo and I. Verbauwhede, “Architectural
Optimization for a 1.82 Gbits/sec VLSI Implementation
of the AES Rijndael Algorithm” , Proc. Chess 2001, May
2001.
P.Mroczkowski, “Implementation of the Block Chiper
Rijndael Using Altera FPGA”, 2001.
B. Schneider, Applied Cryptography – Pprotocols
Algorithm sand Source Code in C, New York: John
Wiley & Sons, 1996.
B.Weeks, M.bean, T. Rozylowicz, and C.Ficke,
“Hardware Performance Simulations of round 2
Advanced Encryption Standard Algorithms“, Proc.
Third Advanced Encryption Standard (AES) Candidate
Conf., Apr 2000.
Xilinx Inc., San JOSE, Calif., “Virtex, 2.5 V Field
Programable Gate Array”, 2001, www.xilinx.com.

