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Abstract. Two architectures and VLSI implementations 
of the AES Proposal Rijndael, are presented in this 
paper. These alternative architectures are operated both 
for encryption and decryption process. They reduce the 
required hardware resources and achieve high-speed 
performance. Their design philosophy is completely 
different. The first uses feedback logic and reaches a 
throughput value equal to 259 Mbit/sec. It performs 
efficiently in applications with low covered area 
resources. The second architectures is optimized for 
high-speed performance using pipelined technique. Its 
throughput can reach 3.65 Gbit/sec.  
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1. Introduction 

 
In our days, the need for secure transport protocols 

seems to be one of the most important issues in the 
communication standards. Of course, many encryption 
algorithms support the defense of private 
communications. However, the implementations of this 
algorithm is a complicated and difficult process and 
sometimes results in intolerant performance and 
allocated resources in hardware terms. The explanation 
for this fact is because these encryption algorithms were 
designed some years ago and for general cryptography 
reasons. In recent years, new flexible algorithms 
specially designed for the new protocols and applications 
have been introduced to face the increasing demand for 
cryptography. 

 
In October of 2000, the National Institute of 

Standards and Technology (NIST) announced the cipher 
Rijndael as the Advanced Encryption Standard (AES) in 
order to replace the aging Data Encryption Standard 
(DES) (Schneider 1996).  

 
In the Third Advanced Encryption Standard (AES) 

Candidate Conference (AES 2000), papers from 
different research groups were presented (Dandalis et al 
2000; Elbirt et al 2000; Gaj et al 2000; Weeks et al 2000; 

Gaj et al 2001). The main purpose of these works was 
the evaluation of the AES finalist algorithms in terms of 
hardware implementation performance. In order to 
achieve this, all the authors used general purposes 
architectures and not specialized designs for each 
algorithm implementation. This is a fair methodology for 
comparison of different algorithms. On the other hand, 
this way is not well-suited to the implementation of each 
algorithm separately. In addition, in two of these works 
(Dandalis et al 2000; Elbirt et al 2000) only the 
encryption mode of operation was implemented and not 
the decryption. References (Elbirt et al 2000; Gaj et al 
2000; Gaj et al 2001) do not support the on-chip-
generation of the necessary for the algorithm encryption-
decryption keys. In other words, the proposed designs do 
not support the completed operation of the algorithms 
and perform inefficiently in terms of both the encryption 
and decryption mode of data transformation. 

 
Especially for the Rijndael algorithm, other works 

(Kuo et al 2001; Fischer et al 2001; Mroczkowski et al 
2001) have been published. The proposed work in (Kuo 
et al 2001) is an uncompleted implementation of the 
algorithm’s total operation. It supports only the 
encryption process. In (Mroczkowski et al 2001), two 
different designs are introduced, one for encryption and 
one for decryption. They have been implemented in two 
separate FPGA devices. This is not right way for the 
implementation of a block cipher. It is not efficient for 
the implementation of communications protocols, 
especially in integrated circuits with low allocation 
resource specifications. The proposed implementation in 
(Mroczkowski et al 2001) needs two different FPGA 
devices in order to ensure the complete operation of the 
algorithm. 

 
In this paper, two architectures and VLSI 

implementations of the AES proposal are presented. 
These alternative designs operate both for encryption 
and decryption process in the same device. They are 
proposed in order to reduce the required hardware 
resources and to achieve high-speed performance. In the 
first design, the appropriate key expansion unit is 



 

integrated with the encryption/decryption core. 
Performance analysis and comparison results with other 
works are also reported. 

 
2. The Rijndael Encryption/Decryption Algorithm 

 
     A new block encryption algorithm called Rijndael has 
been developed and published by Daemen and Rijmen 
(Daemen et al 2001). This algorithm is an iterated block 
cipher with variable block length and a variable key 
length. The block and the key length can be 
independently specified to 128, 192, or 256 bits. The 
number of algorithm rounds depends on the block and 
key length. 

 
     The different transformations of the algorithm 
architecture operate on the intermediate result, called 
State. The State can be pictured as a rectangular array of 
bytes. This array has four rows. The number of columns 
is called Nb and it is equal to block length divided by 32. 
The Key is also considered as a rectangular array with 
the same number of rows as State. The number of 
columns is equal to the key length divided by 32. This 
number is denoted as Nk. The number of rounds, Nr, 
depends on the values Nb and Nk. For block and key 
length equal to 128 bits, both values of Nb and Nk are 
equal to four and the number of rounds Nr is defined as 
10. These specifications are served by the proposed 
implementations, which will be analyzed in detail in the 
next paragraphs. 

 
     A basic round transformation relies on combining 
operations from four fundamental algebraic functions 
that operate on arrays of bytes. These transformations 
are: 

•  SubBytes: Operates in each byte of the State 
independently. This mathematical substitution is 
constructed of the compositions of two 
transformations: multiplicative inverse in GF(28) 
and an affine mapping over GF(2) inverse in 
GF(28), too, and the inverse of the affine mapping 
transformation over GF(2). 

•  ShiftRow: Cyclically shifts the rows of the State 
over different offsets. The operation is almost the 
same in the decryption process except for the fact 
that the shifting offsets have different values. 

•  MixColumn: In this transformation, the columns of 
the State are considered as polynomials over 
GF(28) and are multiplied with a fixed polynomial 
        c(x)=´03´x3+´01´x2 +´01´x+´02´  
for encryption and with the polynomial  
        d(x)=´0B´x3+ +´0D´x2+´09´x+´0E´  
for the decryption process.  
Both polynomial multiplications are modulo 
(x4+1). 

•  KeyAddition: In this operation, the round key is 
applied to the State by simple bit by bit XOR. 
KeyAddition is the same for the decryption process. 

 
     Before the first round, a key addition layer is applied 
to the cipher data. This transformation is stated as the 
algorithm initial round key addition. The final round of 
the cipher is equal to the basic round with the 

MixColumn step removed. A key expansion unit is 
defined in order to generate the appropriate key, for 
every round, from the initial key value. When all rounds 
of transformation are completed, a cipher data block 
with the same length as the plain data has been 
generated. 
 
     The decryption process has the same structure as the 
encryption architecture. The only main difference is that 
for every function that is used in the basic round, the 
mathematical inverse of it is taken. The key expansion 
unit performs almost the same operation with the 
encryption process. The only difference is that the 
decryption of the round keys is obtained by applying the 
inverse MixColumn to the corresponding round keys. 
The initial value of the key for the decryption operation 
is changed. The appropriate basic decryption key must 
be loaded in the key buffer before the decryption 
beginning (Daemen et al 2001).  

 
3. Hardware Architectures. VLSI Implementations 

 
     Two alternative architectures are proposed for the 
Rijndael algorithm in order to reduce the required 
hardware resources and to achieve high-speed 
performance. Both architectures serve the encryption and 
decryption process in the same hardware device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Basic block round architecture 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Key Expansion Unit architecture 
 
3.1. Basic Block Round 
     The architecture of the basic block round is shown in 
Figure 1. As was already mentioned in the previous 
section, each basic round of the algorithm is composed 
of basic building blocks: SubByte, ShiftRow, 
MixColumn, and KeyAddition. The structure of 
SubBytes and MixColumn turned out to be challenging.  

 
3.2. First Architecture with Implemented Key Expansion 
     The first proposed architecture is shown in detail in 
Figure 2. This architecture performs both the encryption 
and the decryption process, with input plaintext and key 
vector equal to 128 bit. The algorithm specifies 10 
rounds for the State transformation and an extra initial 
round key addition.A key buffer of 128-bit width is used 
for the key storage.  
 
     In the initial round key addition transformation, the 
input state is XOR-ed with the input key. In the first 
step, the initial round key addition is executed and the 
key for the first round is calculated. In a clock cycle, one 
transformation round is executed and, at the same time, 
the appropriate key for the next round is calculated. The 
whole process reaches the end when 10 rounds of 
transformation are completed. The input Register is used 
to keep the transformed State after every round of 
operation. The State is forced to this register with the use 
of a feedback technique. The Basic Block Round 
architecture is shown in Figure 1 and has been described 
in detail in Section 3.1. 
 
     The Key Expansion Unit architecture is illustrated in 
Figure 2. The round keys are derived from the initial 
key. Two are the basic component of this unit, the Key 
Transformation and the Round Key selection. The total 
number of the round key bits is equal to the block length, 
multiplied by the number of rounds plus one. The 

proposed implementation with 128 bit block length and 
10 rounds generates 10*128 bit round keys. The round 
keys are taken from the initial key in a complicated way, 
defined in detail in the algorithm specification (Daemen 
et al 2001). 

 
     The algorithm demands a different operation mode of 
the key expansion unit, between encryption and 
decryption processes. The basic difference is that, in 
decryption, the round keys are obtained by applying the 
inverse MixColumn to the corresponding round keys.  

 
     The total execution time is one clock cycle for every 
round, plus one clock cycle for the initial round key 
addition. So, the system needs 11 clock cycles in order to 
completely transform a 128 bits data clock.  

 
     The Key Expansion Unit architecture is illustrated in 
Figure 2. The round keys are derived from the initial 
key. Two are the basic component of this unit, the Key 
Transformation and the Round Key selection. The total 
number of the round key bits is equal to the block length, 
multiplied by the number of rounds plus one. The 
proposed implementation with 128 bit block length and 
10 rounds generates 10*128 bit round keys. The round 
keys are taken from the initial key in a complicated way, 
defined in detail in the algorithm specification (Daemen 
et al 2001). 

 
     The algorithm demands a different operation mode of 
the key expansion unit, between encryption and 
decryption processes. The basic difference is that, in 
decryption, the round keys are obtained by applying the 
inverse MixColumn to the corresponding round keys.  

 
     The total execution time is one clock cycle for every 
round, plus one clock cycle for the initial round key 



 

addition. So, the system needs 11 clock cycles in order to 
completely transform a 128 bits data clock. 

 
3.3 Second Architecture Using RAM for Key Storage 

     The second proposed architecture is shown in Figure 
3. The main characteristics of this are:  

1) the pipelining used technique and    
2) the usage of a RAM for the key storage and 
loading.  
 

     It is not possible to apply pipelining in many 
cryptographic applications. However, the Rijndael 
cryptographic algorithm internal architecture provides 
the possibility of being implemented with pipelining 
technique. The pipelining architecture offers the benefit 
of high-speed performance. The implementation can be 
applied in applications with hard throughput needs. This 
goal is achieved by using a number of operating blocks 
with a final cost to the covered area.  

 

     The proposed architecture uses 10 basic round blocks, 
which are cascaded by using pipeline registers. In this 
architecture, 10 blocks of data can be transformed at the 
same time. The main disadvantage of the second 
proposed design is the increased required effective area.  
In order to face this problem, RAM was used for the key 
storage.  
 
     Many FPGAs provide embedded RAM, which many 
be used to replace the Key Expansion Unit and the 
internal buffer of these architecture for the initial key. In 
this way, the appropriate key for each round can be 
addressed from the RAM. External RAM blocks can also 
be used. The size of RAM megacells can be 
customizable to fit the application demands in terms of 
the key length. 

 
     In such architectures the switching time of the RAM 
is a factor that has to be considered in the total 
performance timing measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3. Architecture using RAM for key loading 
 

4. Performance Analysis 
 
     Each one of the proposed architectures was 
implemented by using VHDL, with structural description 
logic. Both implementations were simulated for the 
correct encryption and decryption operation using the 
test vectors provided by the AES submission package 
(AES 2000). The VHDL codes of the two designs are 

synthesize, placed and routed using FPGA devices of 
Xilinx (Virtex) (Xilinx 2001). The two architectures 
were simulated again for the verification of the correct 
functionality in real time operating conditions.  

 
The measurements of the performance analysis are 

shown in Table 1. Measurements from other designs are 
added in the same table. 



 

     The first architecture was optimized with covered 
area constraints. Xilinx Virtex XCV300BG432 was 
selected for this architecture implementation. The 
throughput reaches the value of 259 Mbit/sec for both 

encryption and decryption process. This architecture 
operates with an external clock with frequency of 22 
Mhz. In the proposed architecture, the critical path is 45 
ns. 

Table. 1. The measurements of the performance 
 

Arch. Proc. FPGA CLB Fre. Thr. 
First En/De XCV300BG560 2358 22 259 

Second En/De XCV1000BG560 17314 28.5 3650 
(Dandalis et al 2000) Encr. Xilinx 5673 - 353 

(Elbirt et al 2000) Encr. XCV1000BG560 5302/10992 14.1/31.8 300/1940 
(Gaj et al 2000) En/De Xilinx 2902 25.9 331 

(Weeks et al 2000) En/De ASIC 35x106um2 - 265 
(Kuo et al 2001) Encr. ASIC 3.96 mm2 100 910 

(Fischer et al 2001) En/De Altera 845 LE - 750 
(Mroczkowski et al 2001) Decr. Altera 2885 41.5 248 

 
The throughput is calculated with the following 

formula: 
 

Throughput=block_size*frequency/total clock cycles   (1) 
 
The transformed block size is 128 bit and the 

frequency is 22 Mhz. The necessary clock cycles for one 
block encryption or decryption are 11. 

For the second pipelining architecture, the device has 
128k bits of embedded RAM, divide in 32 RAM blocks, 
that are separate from configured to provide a maximum 
of 384K bits of RAM independent of the supported 
embedded RAM. The Virtex block RAM also includes 
dedicated routing to provide an efficient interface with 
both Configurable Logic Blocks (CLBs) and other block 
RAMs. 

The throughput in the pipelining architecture is give 
by: 

 

     Throughput= block_size/Tclkbasic                (2) 
 

where Tclkbasic is he delay of a single round, including 
register delay. Tclkbasic is 35 ns. The width of the 
transformed block size is 128 bits. The second 
architecture achieves throughput 3.65 Gbit/sec. The 
external clock frequency is 28.5 Mhz. All the compared 
architectures operate with data and key block width of 
128 bits. Someone could claim that the proposed first 
architecture has a little bit slower performance at about 
10, 15 percent compared with the other architectures. 
Nevertheless, this is a physical result of the algorithm 
philosophy and not a tradeoff. In this cryptographic 
algorithm, the key expansion unit is partially modified in 
the case of decryption process. Especially, as the 
Rijndael introducers clarify in their AES-proposal 
specifications (Daemen et al 2001), the InvMixColumn 
has to be applied to all round keys except the first and 
the last one, during the decryptions process. In our first 
architecture proposed, the critical path is specified of the 
key expansion unit. In order to have a hardware 
implementation that supports both encryption and 
decryption the critical path of the key expansion unit for 
the slower process defines the critical path of the total 
system. 
 

The two proposed architectures support encryption 
and decryption in the same dedicated hardware device. 
So, in a comparison attempt, in hardware performance 
with other architectures that support only encryption 
(Dandalis et al 2000; Elbirt et al 2000), these special 
algorithm characteristics must be considered. Some other 
designs (Elbirt et al 2000; Gaj et al 2000) do not support 
the appropriate key scheduling unit in the implemented 
device. In the first architecture proposed, the appropriate 
key expansion unit has been integrated in the same 
FPGA device. This extra feature of these architecture 
adds, of course more allocated hardware recourses and 
decreases the algorithm core performance.   

 
5. Conclusions 
 

Two different philosophies of VLSI architectures for 
the design and implementation of the Rijndael 
encryption algorithm have been presented.  

 
The first uses feedback logic and reaches throughput 

value equal to 259 Mbit/sec. This architecture supports 
key expansion unit in the same device and performs 
efficiently in applications with low covered area 
resources.  

 
The second is optimized for high-speed performance 

using pipelining technique with high data throughput of 
3.65 Gbit/sec.  

 
The resulting VLSI circuits achieve data rates 

significantly high, supporting both operation processes 
(encryption/decryption) of Rijdael algorithm. They can 
be applied to online encryption/decryption needs of high 
speed networking protocols like Asynchro-nous Transfer 
Mode (ATM) or Fiber Distributed Data Interface 
(FDDI).   
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