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Abstract—Two architectures and VLSI implementations of the AES Proposal,

Rijndael, are presented in this paper. These alternative architectures are operated

both for encryption and decryption process. They reduce the required hardware

resources and achieve high-speed performance. Their design philosophy is

completely different. The first uses feedback logic and reaches a throughput value

equal to 259 Mbit/sec. It performs efficiently in applications with low covered area

resources. The second architecture is optimized for high-speed performance using

pipelined technique. Its throughput can reach 3.65 Gbit/sec.

Index Terms—AES, Rijndael, secret key ciphers, security, pipelining

architectures.
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1 INTRODUCTION

IN our days, the need for secure transport protocols seems to be
one of the most important issues in the communication standards.
Of course, many encryption algorithms support the defense of
private communications. However, the implementation of these
algorithms is a complicated and difficult process and sometimes
results in intolerant performance and allocated resources in
hardware terms. The explanation for this fact is because these
encryption algorithms were designed some years ago and for
general cryptography reasons. In recent years, new flexible
algorithms specially designed for the new protocols and applica-
tions have been introduced to face the increasing demand for
cryptography.

In October of 2000, the National Institute of Standards and
Technology (NIST) announced the cipher Rijndael as the Ad-
vanced Encryption Standard (AES) [1] in order to replace the aging
Data Encryption Standard (DES) [2]. The new algorithm is
expected to be a standard by the summer of 2001 [3].

In the Third Advanced Encryption Standard (AES) Candidate
Conference [4], papers from different research groups were
presented [5], [6], [7], [8], [9]. The main purpose of these works
was the evaluation of the AES finalist algorithms in terms of
hardware implementation performance. In order to achieve this, all
the authors used general purpose architectures and not specialized
designs for each algorithm implementation. This is a fair
methodology for comparison of different algorithms. On the other
hand, this way is not well-suited to the implementation of each
algorithm separately. In addition, in two of these works ([5], [6]),
only the encryption mode of operation was implemented and not
the decryption. References [6], [7], and [9] do not support the on-
chip-generation of the necessary for the algorithm encryption/
decryption keys. In other words, the proposed designs do not
support the completed operation of the algorithms and perform
inefficiently in terms of both the encryption and decryption mode
of data transformation.

Especially for the Rijndael algorithm, other works [10], [11], [12]
have been published. The proposed work in [10] is an uncom-
pleted implementation of the algorithm’s total operation. It
supports only the encryption process. In [12], two different designs

are introduced, one for encryption and one for decryption. They

have been implemented in two separate FPGA devices. This is not

the right way for the implementation of a block cipher. It is not

efficient for the implementation of communications protocols,

especially in integrated circuits with low allocation resource

specifications. The proposed implementation in [12] needs two

different FPGA devices in order to ensure the complete operation

of the algorithm.
In this paper, two architectures and VLSI implementations of

the AES proposal are presented. These alternative designs operate

both for encryption and decryption process in the same device.

They are proposed in order to reduce the required hardware

resources and to achieve high-speed performance. In the first

design, the appropriate key expansion unit is integrated with the

encryption/decryption core.
The paper is organized as follows: In Section 2, the cipher

Rijndael is described. In Section 3, the two different architectures

are presented in detail. Performance analysis and comparison

results with other works are reported in Section 4. Finally,

concluding remarks are made in Section 5.

2 THE RIJNDAEL ENCRYPTION/DECRYPTION

ALGORITHM

A new block encryption algorithm called Rijndael has been

developed and published by Daemen and Rijmen [13]. This

algorithm is an iterated block cipher with variable block length

and a variable key length. The block and the key length can be

independently specified to 128, 192, or 256 bits. The number of

algorithm rounds depends on the block and key length.
The different transformations of the algorithm architecture

operate on the intermediate result, called State. The State can be

pictured as a rectangular array of bytes. This array has four rows.

The number of columns is called Nb and it is equal to block length

divided by 32. The Key is also considered as a rectangular array

with the same number of rows as State. The number of columns is

equal to the key length divided by 32. This number is denoted as

Nk. The number of rounds, Nr, depends on the values Nb and Nk.

For block and key length equal to 128 bits, both values of Nb and

Nk are equal to four and the number of rounds Nr is defined as 10.

These specifications are served by the proposed implementations,

which will be analyzed in detail in the next paragraphs.
A basic round transformation relies on combining operations

from four fundamental algebraic functions that operate on arrays

of bytes. These transformations are:

. SubBytes: Operates in each byte of the State indepen-
dently. This mathematical substitution is constructed of the
compositions of two transformations: multiplicative in-
verse in GFð28Þ and an affine mapping over GF(2)
transformation. The decryption needs the multiplicative
inverse in GFð28Þ, too, and the inverse of the affine
mapping transformation over GF(2).

. ShiftRow: Cyclically shifts the rows of the State over
different offsets. The operation is almost the same in the
decryption process except for the fact that the shifting
offsets have different values.

. MixColumn: In this transformation, the columns of
the State are considered as polynomials over GFð28Þ
and are multiplied with a fixed polynomial
cðxÞ ¼ 0030x3 þ 0010x2 þ 0010xþ 0020 for encryption and with
the polynomial dðxÞ ¼ 00B0x3 þ 00D0x2 þ 0090xþ 00E0 for the
decryption process. Both polynomial multiplications are
modulo ðx4 þ 1Þ.
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. KeyAddition: In this operation, the round key is applied to
the State by simple bit by bit XOR. KeyAddition is the
same for the decryption process.

Before the first round, a key addition layer is applied to the

cipher data. This transformation is stated as the algorithm initial

round key addition. The final round of the cipher is equal to the

basic round with the MixColumn step removed. A key expansion

unit is defined in order to generate the appropriate key, for every

round, from the initial key value. When all rounds of transforma-

tion are completed, a cipher data block with the same length as the

plain data has been generated.
The decryption process has the same structure as the encryp-

tion architecture. The only main difference is that for every

function that is used in the basic round, the mathematical inverse

of it is taken. The key expansion unit performs almost the same

operation with the encryption process. The only difference is that

the decryption of the round keys is obtained by applying the

inverse MixColumn to the corresponding round keys. The initial

value of the key for the decryption operation is changed. The

appropriate basic decryption key must be loaded in the key buffer

before the decryption beginning (for more details, see [13]).

3 HARDWARE ARCHITECTURES AND VLSI
IMPLEMENTATIONS

Two alternative architectures are proposed for the Rijndael

algorithm in order to reduce the required hardware resources and

to achieve high-speed performance. Both architectures serve the

encryption and decryption process in the same hardware device.

3.1 Basic Block Round

The architecture of the basic block round is shown in Fig. 1. As was

already mentioned in the previous section, each basic round of the

algorithm is composed of basic building blocks: SubBytes,

ShiftRow, MixColumn, and KeyAddition. The structure of Sub-

Bytes and MixColumn turned out to be challenging.

1. SubBytes: This is the first step of the data transformation
process, where each block is replaced by its substitution in
an S-Box table. The implementation of the S-Box consists of
two different mathematical functions: a) the multiplicative
inverse of each byte of the State in the finite field GFð28Þ
and b) an affine mapping transformation over GF(2).

The most well-known VLSI architectures for the multi-

plicative inverse in GFð2mÞ use arrays of basic inversion

block cells ([14], [15], [16]). This method has time and area

requirements with a complexity which varies from Oðm2Þ
([6]) to Oðm4Þ ([13], [14]). In terms of execution time, such

architectures need a number of cycles per inversion with

range values between m ([15], [16]) and 3m + 2 ([16]) in

order to achieve multiplicative inverse in GFð2mÞ. These

values are unacceptable for a high-speed implementation

of a cryptographic algorithm.

In order to overcome the above performance bottleneck,

it is proposed that the integration of the multiplicative

inverse be produced by the use of an LUT (look up table).

In this way, each byte of the State is replaced with its

reciprocal in the same GFð28Þ. The use of the LUT needs

one time step and this execution time is significantly less

than the other proposed implementations in [14], [15], [16].

Although the covered area of the LUT is greater than the

conventional architectures ([14], [15], [16]), this is not a

problem for the current FPGA technology.

The affine mapping transformation for the algorithm

encryption process is defined as:

Out½i� ¼ In½i� XOR In½ðiþ 4Þ mod 8� XOR In½ðiþ 5Þ mod 8�
XOR In½ðiþ 6Þ mod 8� XOR In½ðiþ 7Þ mod 8�
XOR CðiÞ;

ð1Þ

where In[i] is the ith bit of the input byte and C(i) is the ith

bit of a byte constant C with the value C = {01100011}, as

the algorithm specifications defines.

The inverse affine mapping transformation for the

decryption process is defined by:

Out½i� ¼ In½ðiþ 2Þ mod 8� XOR In½ðiþ 5Þ mod 8�
XOR In½ðiþ 7Þ mod 8� XOR CðiÞ:

ð2Þ

In this case, constant C has the value C = {00000101}.

It’s important to mention that, in the encryption

process, the SubByte transformation takes the multiplica-

tive inverse over GFð28Þ of a byte first and then the affine

mapping process is applied. In the decryption process, that

is also called inverse cipher, the inverse of the affine

mapping is followed by taking the multiplicative inverse in

GF(2). In order to achieve the implementation of these two

different operating modes in the SubByte component, a

multiplexer block (Fig. 1) has been added.
2. ShiftRow: The ShiftRow operation is achieved with simple

use of four multiplexers.
3. MixColumn: This operation is applied over the State

column. Every column S of the State consists of four bytes
S = {S0, S1, S2, S3}. In both encryption and decryption, the
state column is multiplied by a different specified
polynomial, as is described in Section 2, and, finally, a
transformed column T = {T0, T1, T2, T3} is generated. The
MixColumn component does not operate in the last round
of the algorithm. An appropriate select signal determinates
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when the input data would be transformed. In the case of
the last round, the appropriate value of the MixCol Select
signal forces the input to the output of the component with
no data transformation.

In order to achieve the appropriate polynomial multi-

plications, in the proposed hardware implementation of

the MixColumn, two basic components were designed.

The first component is named ControlPort. It accepts as

input the four bytes of the transformed State column,

{In0, In1, In2, In3}, and provides as output two bytes, Y and

Z. In the encryption process, Y and Z are defined as:

Y ¼ In0 XOR In1 XOR In2 XOR In3; ð3Þ

Z ¼ Y: ð4Þ

In the decryption process, Y and Z are defined as:

T0 ¼ In0 XOR In1 XOR In2 XOR In3; ð5Þ

T1 ¼ T0 XOR ½In2Trans ðIn2TransðT0Þ�; ð6Þ

Y ¼ T1 XOR ½In2Trans ðIn2TransðIn0 XOR In2ÞÞ�; ð7Þ

Z ¼ T1 XOR ½In2Trans ðIn2TransðIn1 XOR In3ÞÞ�; ð8Þ

where In2Trans(K) is the multiplication of the byte K by X

(hexadecimal “02”) over GFð28Þ. The second component of

the MixColumn, called BasicPort, accepts as input the In0,

In1, In2, In3, Y, and Z and provides as output the Out0,

Out1, Out2, and Out3. The appropriate operation of

BasicPort architecture is described as:

Out0 ¼ In0 XOR ½Y XOR In2Trans ðIn0 XOR In1Þ�; ð9Þ

Out1 ¼ In1 XOR ½Z XOR In2Trans ðIn1 XOR In2Þ�; ð10Þ

Out2 ¼ In2 XOR ½Y XOR In2Trans ðIn2 XOR In3Þ�; ð11Þ

Out3 ¼ In3 XOR ½Z XOR In2Trans ðIn3 XOR In0Þ�: ð12Þ

In hardware, this can be implemented in byte level as a

shift left of one bit and a subsequent conditional bitwise

XOR with “1B.” In a dedicated hardware, this operation

needs four 2-input XORs. The input bytes In0, In1, In2, and

In3 are the same four bytes of the transformed State

column, while input Y and Z are provided by the

ControlPort component.
4. KeyAddition: The KeyAddition component consists of eight

2-input XORs for every byte of the State column. Every bit
of the round key is XORed with the appropriate bit of the
transformed data byte.

The two alternative proposed architectures use the same basic

block round architecture.

3.2 First Architecture with Implemented Key Expansion
Unit (AKE)

The first proposed Architecture (AKE) is shown in detail in Fig. 2.

This architecture performs both the encryption and the decryption

process, with input plaintext and key vector equal to 128 bit. The
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algorithm specifies 10 rounds for the State transformation and an
extra initial round key addition.

A key buffer of 128-bit width is used for the key storage. In the
initial round key addition transformation, the input state is XORed
with the input key. In the first step, the initial round key addition is
executed and the key for the first round is calculated. In a clock
cycle, one transformation round is executed and, at the same time,
the appropriate key for the next round is calculated. The whole
process reaches the end when 10 rounds of transformation are
completed. The Input Register is used to keep the transformed
State after every round of operation. The State is forced to this
register with the use of a feedback technique. The Basic Block
Round architecture is shown in Fig. 1 and has been described in
detail in Section 3.1.

The Key Expansion Unit for the AKE architecture is illustrated
in Fig. 2. The round keys are derived from the initial key. Two are
the basic component of this unit, the Key Transformation and the
Round Key selection. The total number of the round key bits is
equal to the block length, multiplied by the number of rounds plus
one. The proposed implementation with 128 bit block length and
10 rounds generates 10 128 bit round keys. The round keys are
taken from the initial key in a complicated way, defined in detail in
the algorithm specifications [13].

The algorithm demands a different operation mode of the
key expansion unit, between encryption and decryption
processes. The basic difference is that, in decryption, the round
keys are obtained by applying the inverse MixColumn to the
corresponding round keys.

The total execution time is one clock cycle for every round, plus
one clock cycle for the initial round key addition. So, the system
needs 11 clock cycles in order to completely transform a 128 bit
data block.

3.3 Second Architecture Using RAM for Key Storage
(ARKL)

The second proposed architecture is shown in Fig. 3. The main
characteristics of this are: 1) the pipelining used technique and
2) the usage of a RAM for the key storage and loading. It is not
possible to apply pipelining in many cryptographic applications.
However, the Rijndael cryptographic algorithm internal architec-
ture provides the possibility of being implemented with pipelining
technique.

The pipelining architecture offers the benefit of high-speed
performance. The implementation can be applied in applications
with hard throughput needs. This goal is achieved by using a
number of operating blocks with a final cost to the covered area.
The proposed architecture uses 10 basic round blocks, which are
cascaded by using pipeline registers.

In this architecture, 10 blocks of data can be transformed at the
same time. The main disadvantage of the second proposed design
is the increased required effective area. In order to face this
problem, RAM was used for the key storage. Many FPGAs provide
embedded RAM, which may be used to replace the Key Expansion
Unit and the internal buffer of the AKE architecture for the initial
key. In this way, the appropriate key for each round can be
addressed from the RAM. External RAM blocks can also be used.
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The size of RAM megacells can be customizable to fit the

application demands in terms of the key length. In such an

architecture, the switching time of the RAM is a factor that has to

be considered in the total performance timing measurements.

4 PERFORMANCE ANALYSIS

Each one of the proposed architectures was implemented by using

VHDL, with structural description logic. Both implementations

were simulated for the correct encryption and decryption opera-

tion using the test vectors provided by the AES submission

package [4]. The VHDL codes of the two designs are synthesized,

placed, and routed using FPGA devices of Xilinx (Virtex) [17]. The

two architectures then were simulated again for the verification of

the correct functionality in real time operating conditions. The

measurements of the performance analysis are shown in Table 1.

Measurements from other designs are added in the same table.

The AKE architecture was optimized with covered area

constraints. Xilinx Virtex XCV300BG432 was selected for this

architecture implementation. The throughput reaches the value of

259 Mbit/sec for both encryption and decryption process. This

architecture operates with an external clock with frequency of

22MHz. In the proposed architecture, the critical path is 45ns.
The throughput is calculated with the following formula:

Throughput ¼ block size � frequency=total clock cycles: ð13Þ

The transformed block size is 128 bit and the frequency is 22 MHz.

The necessary clock cycles for one block encryption or decryption

are 11.
For the pipelining ARKL architecture, the device Xilinx Virtex

XCV1000BG560 was selected. This device has 128K bits of

embedded RAM, divide in 32 RAM blocks, that are separate from

the main body of the FPGA [17]. The FPGA device may be

configured to provide a maximum of 384K bits of RAM

independent of the supported embedded RAM. The Virtex block

RAM also includes dedicated routing to provide an efficient

interface with both Configurable Logic Blocks (CLBs) and other

block RAMs.

The throughput in the pipelining architecture is given by:

Throughput ¼ block size=Tclkbasic; ð14Þ

where Tclkbasic is the delay of a single round, including register
delay. Tclkbasic is 35 ns. The width of the transformed block size is
128 bit. The ARKL architecture achieves throughput 3.65 Gbit/sec.
The external clock frequency is 28.5 MHz.

All the compared architectures operate with data and key block
width of 128 bits. Someone could claim that the proposed AKE
architecture has a little bit slower performance at about 10-
15 percent compared with the other architectures. Nevertheless,
this is a physical result of the algorithm philosophy and not a
tradeoff. In this cryptographic algorithm, the key expansion unit is
partially modified in the case of decryption process. Especially, as
the Rijndael introducers clarify in their AES-Proposal specifica-
tions [13], the InvMixColumn has to be applied to all round keys
except the first and the last one, during the decryption process. In
our proposed architecture (AKE), the critical path is specified of
the key expansion unit. In order to have a hardware implementa-
tion that supports both encryption and decryption, the critical path
of the key expansion unit for the slower process (decryption)
defines the critical path of the total system.

The two proposed architectures support encryption and
decryption in the same dedicated hardware device. So, in a
comparison attempt, in hardware performance with other archi-
tectures that support only encryption ([5], [6]), this special
algorithm characteristic must be considered. Some other designs
([6], [7]) do not support the appropriate key scheduling unit in the
implemented device. In the proposed AKE architecture, the
appropriate key expansion unit has been integrated in the same
FPGA device. This extra feature of the AKE architecture adds, of
course, more allocated hardware recourses and decreases the
algorithm core performance.

5 CONCLUSIONS

Two different philosophies of VLSI architectures for the design
and implementation of the Rijndael encryption/decryption algo-
rithm have been presented. The first uses feedback logic and
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reaches throughput value equal to 259 Mbit/sec. This architecture
supports key expansion unit in the same device and performs
efficiently in applications with low covered area resources. The
second is optimized for high-speed performance using pipelining
technique with high data throughput of 3.65 Gbit/sec. The
resulting VLSI circuits achieve data rates significantly high,
supporting both operation process (encryption/decryption) of
Rijndael algorithm. They can be applied to online encryption/
decryption needs of high speed networking protocols like
Asynchronous Transfer Mode (ATM) or Fiber Distributed Data
Interface (FDDI).
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