Filiera teoretică, profilul real, specializarea științe ale naturii

• Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
• Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1. \(a_1 + a_2 + a_3 = 3 + (3 + 2) + (3 + 2 \cdot 2) = 15 \) 3p
2. \(\frac{b}{2a} = -1 \) 2p
 \(\Delta = \frac{12}{4} = -3 \) 3p
3. \(x^2 - 4x + 4 = 0 \) 3p
 \(x = 2 \) care verifică ecuația 2p
4. Numărul submulțimilor cu 3 elemente ale unei mulțimi cu 5 elemente este egal cu \(\binom{5}{3} = 10 \) 3p
5. \(M(2,3) \) 2p
 \(AM = 4 \) 3p
6. \(\cos a = \frac{2\sqrt{2}}{3} \) 3p
 \(\cotan a = \frac{2\sqrt{2}}{3} \) 2p

SUBIECTUL al II-lea (30 de puncte)

1.a) \(\det (A(3)) = \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 3 = 3 \) 3p
1.b) \(A(-2015) = \begin{pmatrix} 2 & -2015 \\ 1 & 3 \end{pmatrix} \), \(A(2015) = \begin{pmatrix} 2 & 2015 \\ 1 & 3 \end{pmatrix} \) 2p
 \(A(-2015) + A(2015) = \begin{pmatrix} 4 & 0 \\ 2 & 6 \end{pmatrix} = 2 \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = 2A(0) \) 3p
1.c) \(\det (A(x)) = \begin{vmatrix} 2 & x \\ 1 & 3 \end{vmatrix} = 6 - x \) 2p
 \(x^2 + x - 6 = 0 \Leftrightarrow x_1 = -3 \) și \(x_2 = 2 \) 3p
2.a) \(f(0) = 0^3 + a \cdot 0 = 0 \) 2p
2.b) \(f(\frac{3}{2}) = 2 + a \cdot \frac{3}{2} \) 2p
 \(2 + a \cdot \frac{3}{2} = \frac{\hat{3}}{2} \Rightarrow a = \hat{2} \) 3p
2.c) \(\hat{1} + a = \hat{3} + a \cdot \hat{2} \Rightarrow a = \hat{3} \) 2p
 \(f(\frac{3}{2}) = \hat{1} \) și \(f(\frac{4}{2}) = \hat{1} \Rightarrow f(\frac{3}{2}) = f(\frac{4}{2}) \) 3p
SUBIECTUL al III-lea (30 de puncte)

1.a) \[f'(x) = \frac{(x + \ln x) \cdot x - (x + \ln x) \cdot x'}{x^2} = \]
\[= \frac{1 + \frac{1}{x} \cdot x - x \cdot \ln x}{x^2} = \frac{1 - \ln x}{x^2}, \quad x \in (0, +\infty) \]

b) \[y - f(1) = f'(1)(x - 1) \]
\[f(1) = 1, \quad f'(1) = 1, \text{ deci ecuația tangentei este } y = x \]

c) \[f''(x) = 0 \Leftrightarrow x = e \]
\[f''(x) \geq 0 \text{ pentru orice } x \in (0, e] \Rightarrow f \text{ este crescătoare pe } (0, e] \]
\[f''(x) \leq 0 \text{ pentru orice } x \in [e, +\infty) \Rightarrow f \text{ este descrescătoare pe } [e, +\infty) \]

2.a) \[\int_0^1 \left(f(x) - \frac{1}{x + 1} \right) dx = \int_0^1 \left(x + \frac{1}{x + 1} - \frac{1}{x + 1} \right) dx = \int_0^1 x \, dx = \]
\[= \frac{x^2}{2} \bigg|_0^1 = \frac{1}{2} \]

b) \[\int_0^1 x f(x) \, dx = \int_0^1 \left(x^2 + \frac{x}{x + 1} \right) dx = \int_0^1 \left(x^2 + 1 - \frac{1}{x + 1} \right) dx = \]
\[= \left(\frac{x^3}{3} + x - \ln(x + 1) \right) \bigg|_0^1 = \frac{4}{3} - \ln 2 \]

c) \[A = \int_0^1 f(x) \, dx = \int_0^1 \left(x + \frac{1}{x + 1} \right) dx = \left(\frac{x^2}{2} + \ln(x + 1) \right) \bigg|_0^1 = \frac{1}{2} + \ln 2 \]
\[\frac{1}{2} + \ln 2 = \frac{1}{2} + \ln \left(n^2 + n \right) \Rightarrow n = -2 \text{ nu este număr natural } \text{ și } n = 1 \]